

Bacchus Marsh Property Group
124 Hopetoun Park North
Hopetoun Park, VIC

Preliminary Site
Investigation

July 2022

© Edge Group Pty Ltd

Client	Bacchus Marsh Property Group	
Project	Preliminary Site Investigation	
Document Title	Preliminary Site Investigation, 124 Hopetoun Park North, Hopetoun Park, Vic	
Document ID	20220134-R-01.1	
Distribution	1 x electronic pdf copy	

Role	Name/Title	Signature	Date
Written	Natasha Dun Environmental Consultant	Matashal Dun	27/06/2022
Reviewed	Garry Masur Principal Environmental Consultant	8-A	30/06/2022
Approved	Garry Masur Principal Environmental Consultant	8-A_	20/07/2022

Document ID	Changes	Ву	Date
20220134-R-01.1	Minor edits	Edge Group Pty Ltd	11/07/2022
20220134-R-01.2	Minor edits to pages 1,3,4 and figures	Edge Group Pty Ltd	20/07/2022

423 City Road, South Melbourne Victoria 3205

T: 03 8625 9696

E: info@edgegroup.net.au W: edgegroup.net.au ABN: 17618314104

Table of Contents

1	Introduction	1
1.1	Background	1
1.2	Objectives	1
2	Scope of Work	2
3	Current Site Information	3
3.1	Site Details	3
3.2	Topography & Drainage	4
3.3	Geology	4
3.4	Hydrogeology	4
3.5	Site Inspection	6
4	Site History	8
4.1	Review of LotSearch Report (LS031410 EP)	8
4.2	Desktop Review and Site Inspection Summary	11
5	Preliminary Conceptual Site Model	12
6	Potential for Contamination	14
6.1	Recommended Level of Assessment	14
7	Soil Investigation	17
7.1	Adopted Assessment Criteria	17
7.2	Sampling Strategy & Methodology	19
7.3	Laboratory Analytical Program	19
7.4	Quality Assurance (QA) / Quality Control (QC)	20
8	Soil Results Discussion	21
8.1	Soil Field Observations	21
8.2	Soil Analytical Results	21
8.2.1	On-Site Retention / Suitability for Use	21
8.2.2	Waste Categorisation for Off-Site Disposal	22
8.3	Potential Contamination Issues	24
8.4	Data Quality Review	25
9	Conclusions and Recommendations	27
9.1	Conclusions	27
9.2	Recommendations	28
10	Limitations	29
Refer	ences	30
Figure	es	31
Appe	ndices	36

Figures

Figure 1 – Site Location and Surrounding Land Use Figure 2 – Site Features Figure 3 – Borehole Location Plan **Appendices** Appendix A – Laboratory Analytical Results Appendix B – Lotsearch Report Appendix C – Planning Property Reports Appendix D – Title Documents and Plans Appendix E – Groundwater Resource Report Appendix F – BorelogsAppendix F – Borelogs Appendix G – Calibration Certificates Appendix H – Site PhotosAppendix H – Site Photos Appendix I – Laboratory Chain of Custody and Reports In-text Tables Table 2 - Desktop Hydrogeological Review......5 Table 5 – Recommended Approach to Assessing Potentially Contaminated Land15 Table 8 – Soil Investigation Summary......19 Table 11 – Summary of Soil Contamination - 124 Hopetoun Park Road Sheds......21 Table 12 - 124 Hopetoun Park Road TRH Contamination Statistical Analysis22 Table 13 - Potential Contamination Issues24

Table 14 – Data Quality Review......25

1 Introduction

1.1 Background

Edge Group Pty Ltd (Edge) was engaged by Bacchus Marsh Property Group (BMPG) (the Client) to complete a Preliminary Site Investigation (PSI) at:

- 124 Hopetoun Park Road, Hopetoun Park, Victoria, Victoria 3058 (including the Cowans Road escarpment directly west);
- 150 Hopetoun Park Road, Hopetoun Park, Victoria, Victoria 3058;
- 97 Hopetoun Park Road, Hopetoun Park, Victoria, Victoria 3058;
- 189 Hopetoun Park Road, Hopetoun Park, Victoria, Victoria 3058;
- 219 Hopetoun Park Road, Hopetoun Park, Victoria, Victoria 3058;
- 249 Hopetoun Park Road, Hopetoun Park, Victoria, Victoria 3058;
- 259 Hopetoun Park Road, Hopetoun Park, Victoria, Victoria 3058; and
- 30 Kyle Lane, Hopetoun Park, Victoria, Victoria 3058 (the Site).

The location of the Site and the surrounding area are presented in Figure 1.

We understand that Hopetoun Park North is a future residential growth area of Bacchus Marsh in the Moorabool Planning Scheme. It is understood that BMPG own approximately 58 ha of the Subject Site (the western side of Hopetoun Park Road). BMPG, on behalf of the entire Subject Site, lodged a rezoning request from Farming Zone to Neighbourhood Residential Zone in September 2021.

As part of that request, BMPG included draft amendment documentation, including a draft Development Plan Overlay schedule, which contained the following future requirement for the consideration of contamination matters:

An environmental assessment prepared by a suitably qualified environmental professional which assesses the potential level and nature of contamination on the land (if any). The assessment must provide clear advice on whether the environmental condition of the land is suitable for the proposed use/s and whether an environmental audit of all, or part, of the land is recommended having regard to the Potentially Contaminated Land General Planning Practice Note 30 July 2021, DELWP, including recommended remediation actions for any contaminated land.

The draft amendment documentation was referred to the EPA and in its response to the referral, the EPA advised that it was not appropriate to defer consideration of contamination matters to later in the planning process as proposed by the draft documents. Accordingly, BMPG has conducted the PSI earlier in the planning process as per the EPA advice. This PSI comprises a Site history review, Site inspection and targeted soil assessment. The data presented in this PSI provides BMPG information on the feasibility of the proposed developments.

1.2 Objectives

The overarching objective of the PSI is to investigate the potential for contamination at the Site due to current and historical activities on and surrounding the Site, specifically to determine:

- Whether there has been potentially contamination land use
- The nature of potential contaminants
- The extent of the contamination
- Remediation requirements, if any
- Recommendations on the need for further assessments.

2 Scope of Work

This PSI was conducted in accordance with the general requirements of the National Environment Protection Council, National Environment Protect (Assessment of Site Contamination) Measure, 1999 (as amended in 2013) (NEPM 2013).

Edge sourced readily available information to develop an understanding of the former activities conducted at the Site and its surrounds. The information has been provided as Appendix B – Lotsearch Report. The Site history review conducted by Edge includes:

- Review title records provided by BMPG to identify registered proprietors of the Site and current Title Plans pertaining to the various lots within the Site.
- Appraisal of Site geology and hydrogeology including a review of geological, hydrogeological and topographical maps.
- Review of historical aerial photographs and maps.
- Review of EPA Victoria Priority Sites Register to assess whether Clean-Up of Pollution Abatement Notices have been issued for the Site or immediately surrounding properties.
- Review of surrounding groundwater quality restricted use zones (GQRUZ).
- Review of the nearest three surrounding completed Environmental Audit reports within 2km radius (if applicable).
- Search of historical/current landfills surrounding the Site.
- Appraisal of Site geology and hydrogeology including a review of geological, hydrogeological and topographical maps.
- Summary of surrounding groundwater bores utilising the Visualising Victoria's Groundwater (VVG) online database portal within 2km.

Following review of the Site history information, site inspections were conducted at accessible areas of the Site 27 April 2022 and 9 June 2022. A program of targeted soil assessment at potentially contaminated areas was conducted on 9 June 2022.

This PSI report details the findings of our investigations and includes relevant supporting information and findings regarding the potential for contamination to be present. Recommendations for further assessment are also presented in this report.

3 Current Site Information

3.1 Site Details

Table 1 summarises the key details defining the Site. Refer to *Figure 1* for Site location, title description and surrounding land uses. All title records for the Site were provided by the Client (see *Appendix D* – Title Documents and Plans).

Table 1 - Site Identification Details

Table 1 - Site Identification Details			
Site Addresses	 124 Hopetoun Park Road, Hopetoun Park, Victoria, Victoria 3058 (including the Cowans Road escarpment directly west); 150 Hopetoun Park Road, Hopetoun Park, Victoria, Victoria 3058; 97 Hopetoun Park Road, Hopetoun Park, Victoria, Victoria 3058; 189 Hopetoun Park Road, Hopetoun Park, Victoria, Victoria 3058; 219 Hopetoun Park Road, Hopetoun Park, Victoria, Victoria 3058; 249 Hopetoun Park Road, Hopetoun Park, Victoria, Victoria 3058; 259 Hopetoun Park Road, Hopetoun Park, Victoria, Victoria 3058; and 30 Kyle Lane, Hopetoun Park, Victoria, Victoria 3058 (the Site). 		
Registered Owners	 124 Hopetoun Park Road: Bacchus Marsh Property Group Pty Ltd Escarpment west of 124 Hopetoun Park Road: Nicholas Stanley Dellios (1/3 ownership) & Dellios Bros Pty Ltd (2/3 ownership) (Grocery and Related Product Merchant Wholesalers) 150 Hopetoun Park Road: Cain Peter Sidon & Shaye Renee Sidon 97 Hopetoun Park Road: Terrence Anthony Shea & Mary Ann Shea 189 Hopetoun Park Road: Rose Misfud & Oreste Misfud 219 Hopetoun Park Road: Denis John Grieve & Wendy Jane Grieve 249 Hopetoun Park Road: Anna & Zhao Investment Pty Ltd 259 Hopetoun Park Road: Australia Infinity Investment Pty Ltd 30 Kyle Lane: Geoffrey Francis Shea & Susan Patricia Shea 124 Hopetoun Park Road: Volume 11047 Folio 765 Escarpment west of 124 Hopetoun Park Road: Volume 07013 Folio 484 		
Title Description	 150 Hopetoun Park Road: Volume 11047 Folio 764 97 Hopetoun Park Road: Volume 10580 Folio 163 189 Hopetoun Park Road: Volume 09614 Folio 907 219 Hopetoun Park Road: Volume 09614 Folio 908 249 Hopetoun Park Road: Volume 09614 Folio 909 259 Hopetoun Park Road: Volume 09614 Folio 910 30 Kyle Lane: Volume 10580 Folio 162 		
Municipality	Moorabool Shire Council		
Site Area	Total: 1.51 km² 124 Hopetoun Park Road: 56.26 ha Escarpment west of 124 Hopetoun Park Road: ~11.53 ha 150 Hopetoun Park Road: 2.215 ha 97 Hopetoun Park Road: 19.22 ha 189 Hopetoun Park Road: 11.6 ha 219 Hopetoun Park Road: 11.44 ha 249 Hopetoun Park Road: 11.45 ha 259 Hopetoun Park Road: 11.29 ha 30 Kyle Lane: 19.45 ha		
Planning Zone(s)	Farming Zone (FZ) Planning and property reports are presented in <i>Appendix C</i> – Planning Property Reports.		
Planning Overlays	 Design and Development Overlay – Schedule 2 (DDO2) Significant Landscape Overlay – Schedule 1 (SLO1) (West of Hopetoun Rd only) 		

	Public Acquisition Overlay 1 (PAO1)			
	Environmental Significance Overlay – Schedule 8 (ES08)			
Current Use	 124 Hopetoun Park Road: Residential / 'hobby' farm. Escarpment west of 124 Hopetoun Park Road: Vacant land. 150 Hopetoun Park Road: Residential / 'hobby' farm. 97 Hopetoun Park Road: Residential / 'hobby' farm, including horse racing. 219 Hopetoun Park Road: Residential / 'hobby' farm, including horse training. 249 Hopetoun Park Road: Residential / 'hobby' farm. 259 Hopetoun Park Road: Residential / 'hobby' farm. 30 Kyle Lane: Vacant land. 			
Surrounding Land Use	North – Farming zone land use. East – Public use zone – service and utility, followed by a rural conservation zone, followed by a green wedge A zone. South – Low density residential zone. West – Farming zone land use. Notable facilities within 1,000 m of the Site include: Two horse training tracks (and one former track) on 124 (former), 189 and 219 Hopetoun Park Road. One former excavation site quarry 36m northwest of the Site. Two playgrounds, the closest being 263m southwest of the Site. Hopetoun Cemetery, 755m northwest of the Site.			

Notes

Property details correct as of 30th August 2021.

3.2 Topography & Drainage

Land elevation at the Site approximately 140 m above the Australian Height Datum (mAHD). The Site and surrounding areas are generally flat and slope gently down from north to south. Steep escarpments are present along the eastern and western boundary of the Site.

Based on the observed local topography, surface water runoff at the Site is expected to be directed towards the south, or east/west in the proximity of the escarpments. Surface runoff at the site ultimately flows towards the Werribee River, which itself flows into Melton Reservoir.

3.3 Geology

The western portion of the Site is underlain by the Darley Gravel, which consists of red pale coloured gravel, sand and silt. The eastern portion of the Site is primarily underlain by the Newer Volcanic Group (basalt and basaltic clays). The geology changes across the eastern escarpment from basalt to sandstone, including Riddell Sandstone, conglomerate and sandstone and generic colluvium (gravel, sand and silt).

The Atlas of Australian Soils identifies the soil at the Site as Chromosol (Oa2). These soils consist of hard alkaline red soils and cracking clays.

3.4 Hydrogeology

The hydrogeology of the Site in its regional setting has been ascertained from the following references:

- Visualising Victoria's Groundwater (VVG) online database;
- Groundwater Resource Report DELWP, 2019 (Appendix E Groundwater Resource Report); and
- LotSearch Report (Appendix B Lotsearch Report), 22 April 2022 (Reference: LS031410 EP).

A summary of the findings is presented in *Table 2*.

Table 2 - Desktop Hydrogeological Review

Table 2 - Desktop Hydrogeological Review					
	The principal a	The principal aquifers at the Site are:			
Aquifer(s)	 QA Quaternary Aquifer: Sand, gravels, clay, silts. Approximate depth 0-20 mbgl Upper Tertiary / Quaternary Basalt. Approximately 20-30 mbgl. Lower Tertiary Aquifer: Sand, gravel, clay, silt, minor coal. Approximately 20-60 mbgl. Mesozoic and Palaeozoic Bedrock (basement): Sandstone, siltstone, mudstone, shale. Approximate Depth 60-260 mbgl 				
Depth to Upper	77% of the Site: 10 – 50 mbgl				
Groundwater Aquifer	93% of the Site				
Flow Direction			groundwater flo as per local topo	bw to the east, south and west ography.	
Groundwater Quality	range of 3,501	1-13,000 m		expected to have a salinity in the Ils within Segment C of the State 2021).	
Protected Beneficial Uses of Groundwater (Segments A2) (<i>EPA</i> , 2021)	 Water dependent ecosystems Potable mineral water supply Agriculture and Irrigation (stock watering) Industrial and commercial Water-based recreation (primary contact recreation) Traditional owner cultural values Cultural and spiritual values Buildings and structures Geothermal properties. 				
	The Department of Environment and Primary Industries' Water Measurement Information System, and 'Earth Resources Database' provided borehole data for 35 bores within a 2 km radius of the Site. The search indicated the groundwater bores are predominantly used for non-extractive use. The groundwater data information is presented in the LotSearch Report <i>Appendix B</i> – Lotsearch Report. A summary of the key information for the bores within 2 km is provided below.				
	Bore Use	No. of Bores	Nearest Bore	Details	
Nearby Registered Groundwater Bores	Domestic / Stock / Irrigation (extraction)	8	798 m north west (ID: WRK985512)	1 – 2 mbgl: Sandy topsoil 2 – 5 mbgl: Silty clay 6 – 10 mbgl: Heavy gravels 10 – 11 mbgl: Silty clay 11 – 15 mbgl: Sands & Gravels 3 – 15 mbgl Casing 0 – 5.5 mbgl: Clay / Silt,	
	Investigation	4	1536 m west (ID: 146754)	orange/red/brown 5.5 – 6.5 mbgl: Gravel and river rocks 0 – 1.5 mbgl Casing 1.5 – 6.5 mbgl: Screen	
	Observation/ Unknown/ Unspecified/ Non Groundwater	23	711 m north east (ID: 60484)	No data available.	
Groundwater Quality Restriction Zones	EPA Victoria regulates the restriction of groundwater use when groundwater beneath a property is contaminated via the implementation of groundwater quality restricted use zones (GQRUZ). There are currently no properties within 1 km of the Site with a GQRUZ.				

3.5 Site Inspection

Site inspections were conducted on accessible sites on 28 April 2022 and 9 June 2022. Photographs taken during the site inspection are provided in *Appendix H* – Site Photos. The following key observations were made during the Site inspection:

124 Hopetoun Park Road (28/04/2022 & 9 June 2022):

- The land was noted to be used as grazing farmland, with a small number of livestock observed.
- The buildings and adjoining sheds on the Site were noted to be relatively old compared to others at the Site. While it was not possible to inspect these buildings due to the tenant being present, it was noted:
 - o The sheds were constructed on bare earth i.e. without fixed flooring.
 - o The sheds appear currently to be used to be used for vehicle parking and general domestic storage purposes.
 - o Some automotive products and paints were observed in small quantities (i.e. generally 4 litres or smaller). No evidence of spills or releases were noted.
 - o Given their apparent age, there is potential for the house and associated structures to include asbestos containing materials¹.
- A former horse training track was observed, with remnants noted around the perimeter of bluestone gravels and small glass pieces.
- The same bluestone gravels and glass pieces fill material was noted to exist on the roads and hay storage area on the Site.
- A few soil stockpiles were noted on Site. These were inspected and considered to comprise
 natural soils from the Site, with no odour, staining or signs of anthropogenic contamination
 present.
- A collection of waste was noted in the centre of the Site (by the hay storage area), consisting
 of tyre stockpiles, wooden pallets, steel, concrete pipe, three 1000 litre IBCs and other waste.
 No evidence of leakage or obvious signs of contamination (e.g. odour or staining) were
 noted.

Escarpment west of 124 Hopetoun Park Road (28/04/2022):

- This land was vacant with no indicators of prior use that could result in contamination.
- Evidence of vegetation burning was noted.

150 Hopetoun Park Road (inspection conducted from the perimeter on 09/06/2022):

- Although access was not granted by the residents of this site, due to the small portion of the
 property proposed for development located by the perimeter of the Site, Edge were able to
 conduct a sufficient site inspection from the perimeter of the site (within 124 Hopetoun Park
 Road property).
- This property was identified to be a residential hobby farm, with key features including horse stables, a vegetable patch, a shed on a slab and water tanks on the property.
- The buildings and water tanks were observed to be in good condition.
- No signs of contamination were identified.

97 and 219 Hopetoun Park Road:

- Access was not granted by the residents of these sites, and therefore a thorough site inspection was not possible at these Sites.
- Edge notes that from the age and size of these Sites, it is unlikely that commercial farming would have occurred, and limited site contamination would be likely.

⁷This PSI does not constitute an asbestos or hazardous materials audit. A hazardous building materials assessment (including asbestos) in accordance with Work Health and Safety Act 2011 and Safe Work Australia Model Code of Practise (2020) should be undertaken prior to the demolition of the existing buildings and structures at the Site.

• A horse training track on 219 Hopetoun Park Road was observed.

249 Hopetoun Park Road (28/04/2022):

- Edge was able to discuss this property's conditions with the current tenant, who advised that they were planning to use the land for alpaca breeding and shearing.
- Approximately 50m³ of small stockpiles were observed at the northern boundary of the Site. It is noted that the stockpiles appeared as mostly natural material, however some minimal concrete aggregate and plastic were observed in the piles. Discussions with the new tenant at the property indicated no information about the origin of the stockpiles.
- Some brick and concrete aggregate were noted around the vicinity of the dam.
- Waste including an old boat, trailer, oil filters, old furniture, etc. were noted scattered around the property.
- The site shed was inspected at the property, and it was noted that the ground was paved.
- A vehicle inspection trench was noted in the site shed, and it was observed to be filled with water at the time of the inspection, indicating that the base of the trench was likely to be paved (therefore limited potential for soil contamination).

259 Hopetoun Park Road (28/04/2022):

- This property appeared to be predominantly residential use, with no evidence of commercial farming.
- A vegie patch garden and chicken coup were noted on the property.
- A concrete slab with some oil staining was observed.
- No signs of contamination were identified.

30 Kyle Lane (28/04/2022):

- This land was vacant with no evidence of commercial farming potential.
- A small stockpile of approximately 5m³ was observed of recycled road base / bluestone gravels /crushed rock was noted towards the east of the Site, appearing to be the same material used for the road on the property.
- A stockpile was noted by the dam. This was inspected and determined to be representative of the natural soils, with no signs of odour, staining or anthropogenic contamination present.
- A Telstra pole was noted on the Site, and was being serviced during the time of the site inspection.

189 Hopetoun Park Road (09/06/2022):

- This property was identified to be a residential hobby farm, with key features including horse stables and a training track, a shed on a slab and a septic tank on the property.
- No signs of contamination or significant potential contamination sources were identified.

4 Site History

4.1 Review of LotSearch Report (LS031410 EP)

The following LotSearch report was requested by Edge and issued for the Site, to provide details in relation to current and historical land uses at the Site and its surroundings.

• LotSearch (2022), 124 Hopetoun Park, Hopetoun Park, VIC 3188. (Reference: LS031410 EP).

A summary of the Site history information from the LotSearch records are summarised in Table 3 below. The full LotSearch report is provided in Appendix B – Lotsearch Report.

Table 3 - LotSearch Records

Register	Register Information	Interpretation
		In 2021, the training track at 189 Hopetoun Park Road has been resurfaced, and the one at 124 Hopetoun Park Road has been removed. The infrastructure is visible leading up to the dam in the centre of 124 Hopetoun Park Road has been removed.
EPA Records	Review of EPA priority sites, licensed premises and works approvals.	The Site is not currently on the EPA Priority Sites Register. No EPA licensed activities or works approvals were noted in the search radius (1km).
Waste Management Facilities & Landfills	Review of waste management facilities.	No former waste management facilities were indicated within the search radius (1 km).
Prescribed Industrial Waste	Review of EPA Prescribed Industrial Waste treaters, disposers and permitted transporters	Six EPA Prescribed Industrial Waste treaters, disposers and permitted transporters were indicated within the search radius (1km). It is noted that four of the six sites are current, and the other two are former, and all six sites only undertook waste transport and no treatment or disposal. The closest site was 357 m south of the Site (Wolf (VIC) Pty Ltd at 16 Carberry Drive, Hopetoun Park). Further details are available in <i>Appendix B</i> – Lotsearch Report.
PFAS Investigations	Review of EPA, Defence and Air service Investigations.	No PFAS investigations were present at or in the vicinity of the Site based on EPA, Defence and Airservices Investigations.
EPA Environmental Audits & GQRUZ	Review of environmental audits.	No Environmental Audits or Groundwater Quality Restricted Use Zones (GQRUZ) have been noted within the search radius (1km).
Former Gasworks	Review of former gasworks sites within 1 km of the Site.	No gasworks sites were listed in the vicinity of the Site (1km).
National Liquid Fuel Facilities	Review of National Liquid Fuel Facilities (e.g. petroleum service stations) within 1km of the Site.	No liquid fuel facilities sites were listed in the vicinity of the Site (1km).
Historical Maps & Melway Street Directory	Historical maps from 1916 onward were reviewed.	The Site is listed as vacant/farming land from 1916 to 2009. One shed/house is noted on the eastern portion of the Site in 1916 and 1938.
		The Title search provided the following historical information. Site Features and Parts are displayed in <i>Figure 2</i> . Regarding 124 Hopetoun Park Road :
		 12/11/2007: Fraser Property Investments Pty Ltd 08/01/2008: Sub-division occurred into two lots (150 Hopetoun Park Road) 03/08/2017: Bacchus Marsh Property Group Pty Ltd
Title Search	Review of Registered Proprietors at the Site.	Regarding 150 Hopetoun Park Road: 12/11/2007: Owned as part of 124 Hopetoun Park Road by Fraser Property Investments Pty Ltd 08/01/2008: Sub-division occurred 14/08/2017: Cain Peter Sidon & Shaye Renee Sidon
		Regarding Escarpment west of 124 Hopetoun Park Road: • 10/11/1986: Dellios Bros Pty Ltd (Grocery and Related Product Merchant Wholesalers) • 30/12/1996: Nicholas Stanley Dellios (1/3 ownership) & Dellios Bros Pty Ltd (2/3 ownership)

Register	Register Information	Interpretation	
		Regarding 97 Hopetoun Park Road: • 23/05/2001: Terrence Anthony Shea & Mary Ann Shea • 18/11/2009: Sub-division occurred	
		Regarding 189 Hopetoun Park Road: 14/06/1985: Subdivision occurred for 189, 219, 249 & 259 Hopetoun Park Road. 01/05/2019: Rose Misfud & Oreste Misfud	
		Regarding 219 Hopetoun Park Road: • 14/06/1985: Subdivision occurred for 189, 219, 249 & 259 Hopetoun Park Road. • 19/12/2000: Denis John Grieve & Wendy Jane Grieve	
		Regarding 249 Hopetoun Park Road: • 14/06/1985: Subdivision occurred for 189, 219, 249 & 259 Hopetoun Park Road. • 29/05/2018: Anna & Zhao Investment Pty Ltd	
		Regarding 259 Hopetoun Park Road: • 14/06/1985: Subdivision occurred for 189, 219, 249 & 259 Hopetoun Park Road. • 16/10/2019: Australia Infinity Investment Pty Ltd	
		Regarding 30 Kyle Lane: • 04/04/2001: Geoffrey Francis Shea & Susan Patricia Shea • 18/11/2009: Sub-division occurred	
		Title and plan records are presented in <i>Appendix D</i> – Title Documents and Plans.	
Historical Business Directories	UBD Business to Business Directories from 1896 - 1991 were reviewed for information on former sites.	No Sites were listed in the UBD Business to Business Directories in the search radius (1km).	
Historical Mining Activities	Review of mine shaft locations.	A sandstone quarry was identified approximately 235m north of the Site.	
Acid Sulfate Soils	Review of Atlas of Australian Acid Sulfate Soils.	The soil at the Site is classified Class C, described as an extremely low probability of occurrence (1 - 5% chance of occurrence).	
Heritage Listings	Listings from the Commonwealth, National and Victorian Heritage registers were reviewed.	No on-Site heritage listings.	
Cultural Heritage Sensitivity	Review of Cultural Heritage Sensitivity as specified in Division 3 or Part 2 in the Victorian Aboriginal Heritage Regulations 2018, within 1 km of the Site.	Five Areas of Cultural Heritage Sensitivity were identified on the Site, as specified in Division 3 of Part 2 in the Victorian Aboriginal Heritage Regulations 2018. These areas were identified within along the eastern and western boundaries of the Site. Further details are available in <i>Appendix B</i> – Lotsearch Report.	
Natural Hazards	Review of bushfire prone areas, fire history, flood (1 in 100-year flood event) and Victorian Coastal Inundation Sea Level Rise.	The Site is located in a Designated Bushfire Prone Area and a 100-year flood outline. No records of Victorian Coastal Inundation Sea Level Rise were identified in the search radius (1km). Further details are available in <i>Appendix B</i> – Lotsearch Report.	

Register	Register Information	Interpretation
Ecological Constraints	Review of native vegetation, RAMSAR Wetlands, groundwater dependant ecosystems (GDEs) and inflow dependent ecosystems (IDEs).	Several native vegetation exist on the Site and within 1km of the Site. Groundwater and Inflow dependent ecosystems both exist along the western and eastern boundaries of the Site (in close proximity of the Werribee River). No RAMSAR Wetlands exist within 1 km of the Site.

4.2 Desktop Review and Site Inspection Summary

Entire Site:

Desktop review findings indicate the Site was historically and currently used for farming purposes. Although the current use of the Site appears to be rural residential 'hobby' farms, larger scale commercial farming activities would have occurred historically. With respect to the grazing land use, it is noted that the intensive use of herbicides and pesticides on the Site is considered unlikely given it is expected pastures would have been used primarily for livestock.

124 Hopetoun Park Road:

- The shed and house on this property dates back to before 1946, and at this time it appears all of the current day properties are a part of one larger farm in this time. Therefore, due to the age of the shed, it is likely that the shed was utilised for any large-scale commercial farming that may have historically occurred and therefore have given rise to contamination.
 - o Potentially contamination activities that may be associated with large scale commercial use of this shed include:
 - Storage and use of fuels, lubricants and automotive products (i.e. for farming machinery)
 - Automotive repair (i.e. for farming machinery)
 - Agricultural chemical storage (e.g. pesticides)
 - Fertiliser storage
- Furthermore, a former horse training track was observed on this Site, with remnants noted around the perimeter of bluestone gravels and small glass pieces (see *Appendix H* Site Photos). indicating fill material had been used at the Site

30 Kyle Lane:

• A small stockpile of approximately 5m³ was observed of recycled road base / bluestone gravels /crushed rock was noted towards the east of the Site, appearing to be the same material used for the road on the property.

249 Hopetoun Park Road:

Approximately 50m³ of small stockpiles were observed at the northern boundary of the Site.
It is noted that the stockpiles appeared as mostly natural material, however some minimal
concrete aggregate and plastic were observed in the piles (indicating the potential for the
material to be fill material / introduced from other Sites). Discussions with the new tenant at
the property indicated no information about the origin of the stockpiles.

Contamination associated with the aforementioned activities/stockpiles may result in elevated concentrations of herbicides, pesticides, insecticides, metals, total recoverable hydrocarbons (TRH), BTEXN (benzene, toluene, ethylbenzene, xylene, naphthalene), phenols, polycyclic aromatic hydrocarbons (PAH), volatile organic compounds (VOCs) and solvents at the Site.

Furthermore, due to the age of several of the buildings on the properties, there is potential for asbestos containing materials (ACM) to exist within the building materials.

The desktop review did not identify any off-site sources of contamination that could impact the proposed future residential use of Site.

5 Preliminary Conceptual Site Model

A preliminary Conceptual Site Model (CSM) has been developed based on a source–exposure pathway–receptor methodology. This relationship allows an assessment of potential environmental risk to be determined in accordance with NEPM 2013 requirements.

The CSM is based on information and data gathered as part of the desktop investigation and Site inspection.

In accordance with NEPM 2013 guidance the CSM has considered the following elements:

- **Source:** a substance with the potential to cause unacceptable risk to human and/or environmental health.
- Pathway: a mode or route by which the substance/source can migrate to a receptor.
- Receptor: someone and/or something that could be adversely affected by the substance/source.

Where one of these elements is absent, a complete pathway is not present and on this basis there is unlikely to be an unacceptable risk to human health and/or to the broader environment. Where all of these elements are present a complete or potentially complete exposure pathway exists. In such cases the risk to human health and/or the environment may require further investigation and possibly management.

Potential pollutant linkages for human health and environmental receptors are summarised in *Table 4*, in addition to the contaminants of potential concern (CoPCs).

Table 4 –CSM Summary

Potential Contamination Source	Contaminants of potential concern (CoPCs)	Potential Migration & Exposure Pathway	Potential Receptors
	On-Sit	e Sources	
Historical farming practises including fuel storage, automotive repair, agricultural chemical storage and fertiliser storage.	 Hydrocarbons BTEXN Pesticides Herbicides Heavy metals Phenols Solvents PCBs 	 Human exposure to contaminated soil through dermal contact, ingestion or dust inhalation. Leaching of contaminants resulting in impacts to groundwater. Vapour exposure pathway for volatile organic compounds (e.g. fuels and solvents). Uptake by sensitive flora and vegetation. Ingestion be sensitive flora. 	On-site: Construction workers involved in future redevelopment. Current and future residents Terrestrial ecosystems (flora and fauna) Off-site: Groundwater users. Aquatic ecosystems at points of groundwater discharge to surface water.
Imported fill material	 Hydrocarbons BTEXN Pesticides Herbicides Heavy metals Phenols PCBs Asbestos 	 Exposure to contaminated soil through dermal contact, ingestion or inhalation. Leaching of contaminants resulting in impacts to groundwater. 	On-site: Construction workers involved in future redevelopment. Current and future residents Terrestrial ecosystems (flora and fauna)

Potential Contamination Source	Contaminants of potential concern (CoPCs)	Potential Migration & Exposure Pathway	Potential Receptors
		 Uptake by sensitive flora and vegetation. Ingestion be sensitive flora. 	 Off-site: Groundwater users. Aquatic ecosystems at points of groundwater discharge to surface water.

6 Potential for Contamination

Edge conducted site inspections of accessible properties on 27 April 2022 and 09 June 2022 and identified medium and high potential for contamination in some of the properties, as detailed below.

Medium Potential for Contamination activities, as defined in the DELWP 2021 Planning Practice Note were observed:

• Presence of imported fill —Imported fill was observed at the former horse training track at the 124 Hopetoun Road property, and at the hay shed southwest of the former horse training track at 124 Hopetoun Road. Additionally, several small stockpiles containing approximately 50m³ of soil with concrete aggregate rubble at the 249 Hopetoun Road property, and an approximate 5m³ stockpile of what appeared to be recycled road base with bluestone crushed rock at the 30 Kyle Lane property.

High Potential for Contamination activities, as defined by the DELWP 2021 Planning Practice Note, may be associated with shed adjacent to the residential house at 124 Hopetoun Road. Historic aerial photos show the sheds date back to earlier than 1946, so which is likely to have been associated with broad-acre commercial farming, and on this basis may have been used for High Potential for Contamination activities such as:

- Fuel storage (i.e. for farming machinery)
- Automotive repair (i.e. for farming machinery)
- Agricultural chemical storage (e.g. pesticides)
- Fertiliser storage

In consideration of the results of targeted soil testing, as discussed in *Section 8*, the contamination potential rankings listed above have subsequently been down-graded to low.

6.1 Recommended Level of Assessment

The Victorian Government, *Ministerial Direction No.1*, 1987 document outlines the requirement that an environmental audit must be conducted on potentially contaminated land which is designated for a sensitive use, to determine the suitability of the property.

The environmental audit system is legislated under the *Environment Protection Act 2017*, and provides for the appointment of environmental auditors by EPA, and a system of preliminary risk screen assessments (PRSA) and environmental audits, which may be used to inform land use planning for potentially contaminated land.

The Department of Environment Land Water and Planning (DELWP) released the *Potentially Contaminated Land – Planning Practice Note 30 (DELWP 2021 Planning Practice Note)* in July 2021 and gives advice on the identification of contaminated land and the appropriate level of assessment of contamination for planning, and circumstances where an EAO should be applied.

The potential for contamination (PfC) rating assigned to the Site was assessed in line with Table 2 and Tables 3 of the DELWP 2021 practice note to assess the appropriate level of assessment for the property in light of the current and historical uses. Table 3 from the DELWP 2021 practice note has been reproduced in this report as *Table 5* for reference.

Table 5 – Recommended Approach to Assessing Potentially Contaminated Land

Proposed Land Use		Potential For Contamination (PfC)		
	High	Medium		
New use or buildings and works associated with a new use				
Sensitive uses: Residential use, childcare centre, kindergarten, pre-school centre, primary school, even if ancillary to another use.				
Children's playground	Α	В		
Secondary School				
Open Space				
Agriculture	С			
Retail or office	C	D		
Industry or warehouse				
Buildings and works associated with an existing use				
Sensitive uses: Residential use, childcare centre, kindergarten, pre-school centre, primary school, even if ancillary to another use.				
Children's playground	В	В		
Secondary School				
Open Space				
Agriculture	С	D		
Retail or office		U		
Industry or warehouse				

PfC Assessment Level	Appropriate Level of Assessment
Α	PRSA or audit option applies Proceeding directly to an audit is recommended.
В	PRSA or audit option applies PRSA to determine need for audit is recommended.
С	PSI to inform need for audit is recommended.
D	Planning authority to document consideration of potential for contamination to impact proposal.

Notes

Uses defined in Ministerial Direction No 1, the EAO and clause 13.04-1S Planning Proposal Tables adapted from DELWP Planning Practice Note 30, July 2021. Shading indicates the recommended level of assessment

Based on the current and historical information reviewed for the Site, as detailed in *Section 3* and *Section 4* of this PSI report, and considering land uses in Table 2 of the DELWP 2021 Planning Practice Note, the Site has a Medium or High PfC due to historical potentially contaminating activities and the imported fill material.

Therefore, the recommended level of assessment would be A/B: PRSA or audit option.

A PRSA may be requested from the council to inform the need for an audit. A PRSA can be undertaken to determine the need for an environmental audit. Under section 204 of the Environment Protection Act 2017, the purpose of a PRSA is to:

- assess the likelihood of the presence of contaminated land; and
- determine if an environmental audit is required; and
- if an environmental audit is required, to recommend a scope for the environmental audit.

Instead of proceeding to a PRSA or audit, a targeted soil assessment has been undertaken as part of this PSI to confirm the potential for contamination at the identified high and medium risk areas.

7 Soil Investigation

7.1 Adopted Assessment Criteria

The following section discusses adopted assessment criteria based on the Site's proposed future residential use. Specific criteria are provided in the appended analytical results tables.

The 2021 Environment Reference Standard (ERS) provides a framework for the protection of land and associated Environmental Values in Victoria. The ERS defines land use categories and associated Environmental Values to be protected. Environmental Values of land may be precluded when relevant soil quality objectives set out in the ERS have been exceeded.

The ERS refers to the requirements of the National Environment Protection (Assessment of Site Contamination) Measure (NEPM) 2013 as a primary reference document for the protection of Environmental Values of land. The NEPM 2013 details soil investigation criteria as the key objectives for the protection of human health and ecological assessment levels for a range of metals, inorganic and organic compounds, which includes:

- Ecological screening levels (ESLs) for petroleum hydrocarbon compounds.
- Ecological investigation levels (EILs).
- Health screening levels (HSLs) for petroleum hydrocarbon compounds.
- Health investigation levels (HILs).

The investigation / screening levels for the NEPM 2013 as detailed above have been adopted for the purpose of the assessment of contamination in soil. It should be noted that chemical concentrations above the investigation levels would not automatically trigger remedial action, but indicate that further investigation and evaluation of potential risks may be required.

The future residential Site use is considered "Sensitive Use - Other" in accordance with ERS and as such the following Environmental Values of land are protected.

- Maintenance of Ecosystems (Modified and Highly Modified)
- Human Health
- Buildings and Structures
- Aesthetics
- Production of food, flora and fibre.

The protected Environmental Values of land are detailed in Table 6.

Preliminary classification of waste soil for possible off-Site disposal was conducted based on categories outlined in EPA Victoria *Waste disposal categories – characteristics and thresholds*, Publication 1828.2, March 2021.

Table 6 – Environment Reference Standard Environmental Values

		Land Use					
		al	Sensitive Use		/ c	<u> </u>	_
Environmental Value	Parks & Reserves	Agricultura	High Density	Other	Recreation / Open Space	Commercial	Industrial
Maintenance of Ecosystems: Natural Ecosystems	√						
Maintenance of Ecosystems: Modified Ecosystems	√	√		√	√		
Maintenance of Ecosystems: Highly Modified Ecosystems		>	√	>	>	>	√
Human Health	√	√	✓	√	√	√	✓
Buildings & Structures	✓	√	√	√	√	√	✓
Aesthetics	✓		√	✓	✓	✓	
Production of Food Flora and Fibre	✓	✓		✓			

Note

Grey shading denotes land uses are relevant to the current land use and proposed construction program.

Assessment criteria relevant to protected Environmental Values are summarised in *Table 7*.

Table 7 – Adopted Soil Assessment Criteria

Realised Environmental Value	Soil Quality Objectives
Maintenance of	The adopted ecological assessment criteria principally apply to contaminants in the uppermost 2.0 m of soil in urban environments. The following NEPM 2013 ElLs / ESLs have been adopted to assess potential environmental impacts to terrestrial flora and fauna ecosystems:
Ecosystems	Generic and site-specific EILs for aged soils, urban residential & public open space
	ESLs for fine soils and coarse, urban residential.
	The following criteria have been adopted to assess potential impact to human health:
Human health	HIL-A for low density residential, primary schools and childcare centres
	HSL-A/B for low-high density residential, sand, silt and clay soils
	The ERS states that contamination must not cause the land to be corrosive or adversely affect the integrity of structures or building materials.
Buildings and Structures	In accordance with the agreed scope of work, soil testing conducted as part of this Assessment did not include analysis for geotechnical soil properties. A separate geotechnical investigation would be required in planning for future Site development construction.
Aesthetics	There are no quantitative criteria for the assessment of aesthetic impacts; however, the ERS states that contamination must not cause the land to be offensive to the senses of human beings. This is assessed based on visual and olfactory evidence observed during Site investigations.
Production of Food, Flora and Fibre	The assessment criteria adopted for protection of ecosystems are also used to assess for risk to Production of Food Flora and Fibre.

7.2 Sampling Strategy & Methodology

The sampling scope and methodology is summarised in *Table 8*.

Table 8 – Soil Investigation Summary

Assessment	Details
Soil Assessment at 124 Ho	
Bore Locations	 BH01-BH06: Six (6) locations targeting the fill material remnants identified around the former horse training track and hay storage area BH07-BH12: Six (6) locations targeting the site shed and nearby area Sample locations are shown on <i>Figure 3</i>.
Subsurface Clearance	Drilling locations were cleared of underground services by a qualified contractor using a combination of ground penetrating radar and radio detection scanning methods.
Methodology	Soil bores were drilled using mechanically driven solid augers or by hand auger.
Depth of Investigation	Soil bores were extended to a maximum depth of 1.5 m below ground level (m bgl). All bores were drilled to a sufficient depth to allow the sampling of natural soil.
Sampling Intervals	At each location, soil samples were collected from near-surface (0.1 – 0.2 m), 0.5 m and 1.0 m bgl or termination depth.
Sampling Methodology	Samples were collected directly into sample jars provided by the laboratory and were stored in chilled containers for delivery to the analytical laboratories under Chain of Custody documentation.
Soil Logging	Soil samples were logged by an experienced environmental scientist / engineer. Borelogs are provided in <i>Appendix F</i> — Borelogs.
Field Screening	Soil samples were screened in the field for the presence volatile organic compounds (VOC) using a photoioinisation detector (PID).
Equipment Decontamination	Field sampling equipment was decontaminated prior to use at each sampling location to limit the potential for cross-contamination. Decontamination of field equipment involved scrubbing in a detergent solution (i.e. Decon 90°), potable water and finally deionised water.
Reinstatement of Boreholes	All boreholes were reinstated with drill cuttings and made level to ensure no uneven surface or trip hazards result.
Stockpile Assessment & C	Categorisation at 249 Hopetoun Park Road
Stockpile Samples	SP01-SP10: 10 representative stockpile samples collected from the near surface of the stockpiles.
Sampling Methodology	Soil samples were collected by hand/shovel from the near surface of the stockpile.
	Samples were collected directly into sample jars provided by the laboratory and were stored in chilled containers for delivery to the analytical laboratories under Chain of Custody documentation.
Soil Logging	Soil samples will be logged by an experienced environmental scientist / engineer.

7.3 Laboratory Analytical Program

Selected soil samples ranging from the near surface to shallow natural soils were submitted for laboratory analysis of potential contaminants as outlined in *Table 9*.

The primary laboratory analysis was conducted at the ALS Springvale laboratory, which has National Association of Testing Authorities (NATA) accreditation for the analyses performed. NATA-accredited laboratory reports and chain of custody documentation are provided in *Appendix I*.

Table 9 – Soil Laboratory Analytical Schedule

Samples	Analysis			
Shed at 124 Hopetoun Park Road				
BH07-0.1, BH09-0.1, BH11-0.1	NEPM HIL Suite with herbicides			
BH07-0.1, BH09-0.5	NEPM EIL Soil Classification Suite			
BH08-0.1, BH10-0.1	TRH, BTEXN, PAH, OPP, OCP, Heavy metals			
BH09-0.5, BH12-0.1	TRH, BTEXN, PAH, Phenols, Heavy metals			
BH10-0.5, BH11-0.5, BH12-0.5	TRH, BTEXN, Heavy metals			
Horse Training Track at 124 Hopetoun Park Road				
BH01-0.1	NEPM HIL Suite with herbicides			
BH02-0.1, BH03-0.1, BH04-0.1, BH05-0.1, BH06-0.1	TRH, BTEXN, PAH, Heavy Metals			
BH01-0.5, BH03-0.5, BH05-0.5	NEPM 15 Metals			
Stockpiles at 249 Hopetoun Park Road				
SP01	EPA 1828.2 Fill Screen			
SP05, SP07, SP09	TRH, BTEXN, PAH, Heavy Metals			
SP03	NEPM 15 Metals			

Notes

NEPM HIL Suite with herbicides: 15 Metals (S-3), Cr VI, WAD CN, Organics, OCPs, Mirex, Atrazine, Chlorpyrifos, Bifenthrin,

TRH/BTEXN PAHs/Phenols, 16 Herbicides incl' 2,4,5-T, 2,4-5, MCPA, P-21/2 MCPB, Mecoprop & Picloram

NEPM EIL Soil Classification: Fe, CEC, pH (CaCl₂), TOC, Clay Content

EPA 1828.2 Fill Screen: pH, BTEXN, TRH, phenolics, CHC, halogenated benzenes, cyanide, fluoride, MAH, metals (including CrVI), OCP, PAH, PCB

NEPM 15 Metals Screen: As, B, Ba, Be, Cd, Cr, Co, Cu, Mn, Ni, Pb, Se, V, Zn, Hg

Heavy metals: As, Cd, Cr, Cu, Ni, Pb, Zn, Hg

OCP: Organochlorine pesticides

OPP: Organophosphorus pesticides

BTEXN: benzene, toluene, ethyl benzene, xylenes, naphthalene

TRH: total recoverable hydrocarbons

PAH: Polycyclic aromatic hydrocarbons

7.4 Quality Assurance (QA) / Quality Control (QC)

The methodology conducted as part of this PSI was in accordance with the agreed scope which conforms with standard industry practice and Edge internal standard operating procedures.

As part of the quality control (QC) program, one blind duplicate and interlab duplicate sample, one rinsate blank sample and one trip blank sample were collected and submitted for analysis of key contaminants of potential concern. The collection and analysis of quality control samples provides confidence in the results of a sampling program, and is part of the overall quality assurance (QA) / QC program.

A review of the QA/QC process undertaken as part of the Assessment is presented in **Section** 8.4

8 Soil Results Discussion

8.1 Soil Field Observations

A summary of soil conditions observed during the field works conducted as part of the Assessment are summarised in *Table 10* and borelogs are presented in *Appendix F* – Borelogs.

Table 10 – Summary of Observed Soil Conditions

Sample Location	Typical Depth Interval (mbgl)	Typical Description	Observed PIDs (ppm)
		124 Hopetoun Park Road	
	0 – 0.15	FILL: Clayey SILT with gravels, brown, loose.	0.2-0.5
Shed	0.15 – termination depth	CLAY with silt: medium plasticity, reddish brown with some white/pale grey mottling, dry to moist, trace gravels present.	0.2-0.5
Horse Training	0 – 0.3	FILL: Sandy CLAY: Greyish/reddish brown, medium grained sand. Dry to moist, loose. With silt, minor rootlets and minor fine basalt crushed rock gravel.	0.1-0.3
Track	0.3 – 1.0	Silty CLAY: High plasticity, reddish brown, stiff to very stiff. Becoming more yellow with depth.	0.0-0.3
249 Hopetoun Park Road			
Stockpile	-	Clayey, gravelly SILT, brown, dry. Some bluestone crushed rock, quartz, sandstone cobbles, carpet and plastic present.	0.0

Field observations made during the soil sampling program did not identify any obvious indications of soil contamination (i.e. odorous, discoloured or stained soils). The results of PID screening indicate there is low potential for volatile organic compounds (VOC) to be present in the samples collected.

8.2 Soil Analytical Results

Soil analytical results for on-Site retention assessment are presented in *Table A1, Appendix A* and waste soil classification results are presented in *Table A2 Appendix A*. NATA-accredited laboratory reports and chain of custody documentation are provided in *Appendix I*.

8.2.1 On-Site Retention / Suitability for Use

124 Hopetoun Park Road Sheds

All analytes, with the exception of total recoverable hydrocarbons (TRH) $>C_{10}$, all contaminants were reported at concentrations either below the laboratory limits of reporting (LOR) or below all adopted assessment criteria. *Table 11* provides a summary of contamination reported at concentrations above adopted assessment criteria.

Table 11 – Summary of Soil Contamination - 124 Hopetoun Park Road Sheds

Location	Analyte	Sample / Location	Reported Concentration (mg/kg)	Criteria Exceeded
Within sheds	TRH >C ₁₀ -C ₁₆ Fraction (F2 minus Naphthalene)	BH09-0.1	420	120 ¹ 280 ²
at 124 Hopetoun	minus reaphtmateries	BH10-0.1	130	120 ¹
Park Road	TDLL>C C Frantian (F2)	BH09-0.1	2,880	1,300 ¹
Nistani	TRH >C ₁₆ -C ₃₄ Fraction (F3)	BH10-0.1	3,320	1,300 ¹

Notes:

- 1 NEPM Ecological Screening Level (urban residential, fine soil)
- 2 NEPM Health Screening Level (residential A/B, clay)

The TRH concentrations that exceed adopted criteria were reported in shallow (0.1 m bgl) samples taken from two locations within the sheds. While no obvious impact or staining was observed in the area or during soil sampling, the nature of contaminants and expected historic uses suggest the elevated TRH concentrations are likely to be associated with the use and/or storage of hydrocarbon-based fuels (e.g. diesel) and automotive products (e.g. oils and lubricants). Deeper soil samples from BH09 and BH10 (i.e. BH09-0.5 and BH10-0.5) both reported all TRH fractions at concentrations below laboratory LORs.

NEPM (2013) allows for statistical analysis of soil contamination data to assess the significance of contamination 'hotspots' should such be identified in a contamination assessment. This includes the following tests:

- The standard deviation of the sample concentrations should not exceed 50% of the environmental quality objective.
- No individual sample concentration should exceed 250% of the environmental quality objective.
- The 95% upper confidence limit (UCL) of the arithmetic mean concentration of the contaminant should be less than the relevant environmental quality objective.

The results of statistical analysis for TRH contamination at the 124 Hopetoun Park Road Sheds area are provided in *Appendix A* and summarised in *Table 12*.

Table 12 - 124 Hopetoun Park Road TRH Contamination Statistical Analysis

Analyte	Criteria Exceeded	Standard Deviation (mg/kg)	250% of Criteria (mg/kg)	95% UCL (mg/kg)
TRH >C ₁₀ -C ₁₆	120 ¹	116.9	700	256.2
Fraction (F2 minus Naphthalene)	280 ²	116.9	700	256.2
TRH >C ₁₆ -C ₃₄ Fraction (F3)	1,300 ¹	1,251	3,250	2,423

Notes:

- 1 NEPM Ecological Screening Level (urban residential, fine soil)
- 2 NEPM Health Screening Level (residential A/B, clay)
 Bold type with shading indicates exceedance of NEPM statistical analysis criteria

The results of statistical analysis indicate reported TRH F2 concentrations at the sheds area are unlikely to pose an unacceptable risk to human health under a residential land use scenario.

While statistical data for TRH F2 and TRH F3 exceeded one or more of the NEPM criteria, the general absence of contamination at the sheds area indicates the extent of impact is probably limited and as such the isolated occurrence of elevated TRH are not indicative of a significant risk to ecosystems under the current land use.

124 Hopetoun Park Road Horse Training Track

All soil samples collected from the trotting track located at the 124 Hopetoun Park Road property and submitted for laboratory analysis reported all potential contaminants at concentrations either below laboratory LORs or all adopted assessment criteria. On this basis the results of soil testing at the horse training track indicate a general absence of contamination, and as such the risk to protected environmental values is acceptable.

249 Hopetoun Park Road Stockpiles

All soil samples collected from the stockpiles located at the 249 Hopetoun Park Road property and submitted for laboratory analysis reported all potential contaminants at concentrations either below laboratory LORs or all adopted assessment criteria. On this basis the results of stockpile testing indicate a general absence of contamination, and as such the risk to protected environmental values is acceptable should the material be intended for reuse at the Site.

8.2.2 Waste Categorisation for Off-Site Disposal

Preliminary categorisation for off-Site disposal of soil was conducted through comparison of laboratory results against criteria provided in EPA Publication 1828.2 *Waste disposal categories* – *characteristics and thresholds* (March 2021). Preliminary categorisation results are as follows:

124 Hopetoun Park Road Sheds

- The elevated TRH concentrations reported at BH09 and BH10 from the shed fall within the range for Category D soil.
- Slightly elevated nickel concentrations were reported in two samples (BH07-0.1, BH12-0.1) from the sheds area. While the reported concentrations fall within the range for Category D soil, reported concentrations may also be representative of background levels.
- An elevated zinc concentration was reported in one sample (BH11-0.1) from the sheds area and falls within the range for Category D soil.
- It is noted the elevated nickel and zinc concentrations reported do not exceed any of the adopted on-site retention criteria.

Further testing of any material excavated from the sheds area and intended from off-Site disposal would be required to confirm the waste category.

124 Hopetoun Park Road Horse Training Track

All samples collected and analysed from the horse training track area at the 124 Hopetoun Park Road property reported potential contaminants at concentrations within the range for Fill Material.

249 Hopetoun Park Road Stockpiles

All samples collected and analysed from the soil stockpiles located at the 249 Hopetoun Park Road property reported potential contaminants at concentrations within the range for Fill Material.

8.3 Potential Contamination Issues

The DELWP Planning Practise Note considers most agricultural land is not likely to be contaminated. However, consideration needs to be given to the potential for impact associated with the following specific contaminating activities:

- Commercial use of pesticides (including herbicides, fungicides etc)
- Biosolids application to land
- Farm waste disposal

The results of the Assessment indicate that, except where otherwise discussed in *Table 13*, current and historic agricultural activities at the Site are unlikely to have resulted in impacts associated with any of the possible specific contaminating activities listed above. On this basis the Contamination Potential is Low. This conclusion is largely based on the identified nature of current and historic agricultural and related activities, (i.e. historic broad-acre grazing and current small-acre rural residential 'hobby' farming), as well as the results of targeted soil testing.

Table 13 discusses contamination sources and potential for each property based on the findings of this Assessment.

Table 13 - Potential Contamination Issues

	ontamination issues			
Site Activity / Potential Sources	Contamination Potential & Comments			
124 Hopetoun Park Road, Hopetoun Park				
	Contamination Potential: Low			
Site Sheds (potentially associated with historical large scale farming use)	Limited soil petroleum hydrocarbons contamination was identified at near-surface at two locations within the sheds. The contamination has been vertically delineated at both locations and laterally delineated through soil testing at several nearby locations. The identified soil contamination is likely to be restricted to isolated areas within the sheds and not likely to pose an unacceptable risk to human health or ecosystems under the current land use.			
	The initial high potential for contamination is down-graded to low based on the results of targeted soil testing.			
	Contamination Potential: Low			
Former horse training track	Soil testing conducted at the area where the former horse training track was located did not identify elevated concentrations of potential contaminants. Therefore the initial medium potential for contamination classification is down-graded to low.			
	249 Hopetoun Park Road, Hopetoun Park			
	Contamination Potential: Low			
Stockpiles	Soil testing of the stockpiled material did not identify elevated concentrations of potential contaminants. Therefore the initial medium potential for contamination classification is down-graded to low.			
	30 Kyle Lane, Hopetoun Park			
Gravel stockpile	Contamination Potential: Low Edge has been informed that the gravel stockpile is no longer present on the Site, and therefore the overall risk of contamination at the site is downgraded to low.			

In relation to the properties at 97 Hopetoun Park Road and 219 Hopetoun Park Road which were not accessible for inspections at the time of this Assessment, the DELWP Planning Practise Note classification as Low is based on our current understanding of Site conditions from the desktop review. The Low classification may be reviewed following inspections of those properties.

8.4 Data Quality Review

The following section summaries the key data quality indicators (DQI) used to assess the accuracy, completeness, representativeness, comparability and sensitivity of the soil data, in accordance with NEPM (2013) Schedule B2.

Table 14 – Data Quality Review

Item	Data Quality Evaluation
QC Duplicate Analysis	28 primary soil samples were submitted for laboratory analysis. FD01 and FS01 were sampled as a blind duplicate of BH07-0.1 and submitted for laboratory analysis at the primary laboratory (ALS) and secondary laboratory (Envirolab) respectively.
Soil RPD Results	A relative percentage difference (RPD) was calculated for the FD01 / BH07-0.1 and FS01 / BH07-0.1 duplicate pairs to obtain a quantitative measure of the accuracy of the results obtained. An RPD range of 30% to 50% is generally considered acceptable, as outlined in AS4482.1-2005 and NEPM 2013. The RPD data is provided in <i>Table A3, Appendix A</i> . The RPD values were calculated using the formula: $RPD\% = \frac{(X_1 - X_2)}{M} \times 100$ Where: $X_1 = \text{primary sample result}$ $X_2 = \text{duplicate sample result}$ $M = \text{mean result of parent and duplicate}$ 5 of the 34 RPD results (i.e. 15%) for chemical analyses exceeded the adopted acceptable range, with a maximum RPD of 93% being reported. The relatively small number of elevated RPD values reflects the inherent chemical heterogeneity of soils and is not considered to represent a significant data quality issue.
Laboratory Limit of Reporting (LOR)	Laboratory LORs were in all cases lower than adopted assessment criteria. On this basis the sensitivity of laboratory analysis is adequate to assess risk to protected Environmental Values and thereby achieve assessment objectives.
Rinsate Blank Analysis	One rinsate blank (RB01) was collected from the field sampling equipment was submitted for laboratory analysis of key potential contaminants. Analytical results for the rinsate blank sample is provided in <i>Table A4</i> , <i>Appendix A</i> . With the exception of total chromium, all analytes tested were reported at concentrations below laboratory LORs. Total chromium was detected at a concentration of 0.002 mg/L, which is only marginally above the laboratory LOR of 0.001 mg/L and therefore not considered to represent a significant data quality issue. Overall, the results of rinsate blank analysis indicate adequate decontamination procedures were adopted as part the soil sampling program.
Trip Blank Analysis	One trip blank sample (TB01) was submitted for laboratory analysis of volatile contaminants. Analytical results for the trip blank sample is provided in <i>Table A4</i> , <i>Appendix A</i> . All analytes were reported at concentrations below laboratory LORs. This indicates there is low likelihood of cross-contamination between samples occurring during transit.
Laboratory QA/QC	Laboratory internal QC testing reports are included with the laboratory reports in <i>Appendix I</i> – Laboratory Chain of Custody and ReportsThe results of laboratory internal QC testing are summarised as follows: Primary Laboratory: No Method Blank value outliers occur. No Laboratory Control outliers occur.

Item	Data Quality Evaluation
	 No surrogate recovery outliers occur for all regular sample matrices. No Analysis Holding Time outliers exist. Internal duplicate outliers exist for analysis of some metals and PAHs. Matrix spike recovery outliers were reported for herbicides analysis. Quality Control sample frequency outliers are noted for electrical conductivity and pH soil analysis and for TRH analysis on water samples. The relatively small number of laboratory internal QC outliers does not constitute a data quality issue of any significance to the findings of the Assessment. Secondary Laboratory:
	All laboratory QC data was within the Envirolab Group's specifications.
NATA Endorsement of Laboratory Report	ALS and Envirolab laboratory reports were stamped with the NATA endorsement stamp and signature.
Data Completeness	The data quality review indicates no significant systematic errors in the data collection process and therefore, the data set used as the basis for the report is considered valid and complete.

9 Conclusions and Recommendations

9.1 Conclusions

Edge has completed this Preliminary Site Investigation (PSI) of the following rural residential properties at Hopetoun Park, Victoria, covering approximately 1.51 km² and referred to collectively as "The Site":

- 124 Hopetoun Park Road (including the Cowans Road escarpment directly west)
- 150 Hopetoun Park Road
- 97 Hopetoun Park Road
- 189 Hopetoun Park Road
- 219 Hopetoun Park Road
- 249 Hopetoun Park Road
- 259 Hopetoun Park Road
- 30 Kyle Lane (southern portion).

The Site is located within the Hopetoun Park North Precinct Future Residential Growth Area under the Bacchus Marsh Urban Growth Framework.

The overarching objective of the PSI has been to investigate the potential for contamination at the Site due to current and historical activities on and surrounding the Site, specifically to determine:

- Whether there has been potentially contamination land use
- The nature of potential contaminants
- The extent of the contamination
- Remediation requirements (if any)
- Recommendations on the need for further assessments.

The PSI scope of work included an initial Site history review and inspections of accessible properties. Targeted soil testing was conducted in areas where a potential for soil contamination was identified in the initial stages of investigation.

The following conclusions are provided based on investigation results:

- The Site was historically and is currently used for farming and residential purposes. Although the current Site use is essentially rural residential with small-scale 'hobby' farming, larger scale commercial farming activities would have occurred historically.
- The house and adjoining sheds at 124 Hopetoun Park Road date back to pre-1946 and are inferred to have been associated with broader scale farming activities. On this basis, the sheds at this property have the potential for impacts associated with the use and storage of fuels, automotive and agricultural chemicals.
- The sheds at 124 Hopetoun Park Road were subject to targeted soil sampling with laboratory analysis for contaminants of potential concern. While surficial petroleum hydrocarbons impact was identified in some areas, the extent of impact is unlikely to be widespread and not considered to represent a significant risk to protected environmental values under the current land use.
- The former horse training track at 124 Hopetoun Park Road (now largely removed) was subject to targeted soil sampling to assess for contamination potentially associated with fill importation. The results of soil testing indicate that any residual material associated with the former horse training track is not elevated in potential contaminants and would be unlikely to pose a risk to current or future Site users.
- Stockpiled soil located at the northern portion of 249 Hopetoun Park Road, as potentially imported material, has the potential to be contaminated. The stockpile was tested for a broad

range of potential contaminants, none of which were reported at elevated concentrations. On this basis the stockpiled material is considered suitable for reuse at the Site.

The DELWP 2021 Planning Practice Note states that "If the review of the current and historical use of the land and surrounds shows a history of non-contaminating activities and there is no other evidence or suspicion for contamination, further investigation is not required". The results of this PSI, in particular the results of targeted soil testing in potentially contaminated areas, indicate the Site has a low risk of contamination. On this basis no further investigation is considered necessary in planning for redevelopment of the Site to a sensitive land use.

9.2 Recommendations

In consideration of the findings of the PSI findings, the following recommendations are provided:

- Properties that were not accessible for inspection as part of this PSI should be inspected to confirm the low risk of contamination classification.
- A hazardous building materials assessment (including asbestos) in accordance with Work Health and Safety Act 2011 and Safe Work Australia Model Code of Practise (2020) should be undertaken prior to the demolition of the existing buildings and structures at the Site.
- Any material removed from the Site as part of the proposed development will be required to be categorised in accordance with EPA waste regulations and guidelines.
- Prior to receival on Site, any imported fill should be assessed as Fill Material (EPA Publication 1828.2) and consideration against human health and ecological sensitive land use.

10 Limitations

The findings of this report are based on the Scope of Work outlined in the Edge proposals (Edge Ref.: 20220134-P-01 and 20220134-P-02). Edge performed the services in a manner consistent with the expected level of care and expertise exercised by those in the environmental profession.

No other warranty, expressed or implied, is made as to the professional advice included in this report. It is prepared in accordance with the scope of work and for the purpose outlined in the Proposal.

Although normal standards of professional practice have been applied, the methodology adopted, and sources of information used by Edge are outlined in this report. Edge has made no independent verification of this information beyond the agreed scope of works and assumes no responsibility for any inaccuracies or omissions. No indications were found during our investigations that information contained in this report as provided to Edge was false.

All conclusions and recommendations made in the report are the professional opinions of the Edge personnel involved with the project and, while normal checking of the accuracy of data has been conducted, Edge assumes no responsibility or liability for errors in data obtained from regulatory agencies or any other external sources, nor from occurrences outside the scope of this project. Edge have not undertaken a site inspection and hence cannot provide certainty on the current site status/setting.

References

Australian Standard (AS) 4482.1-2005, Guide to the Investigation and Sampling of Site with Potentially Contaminated Soil, Part 1: Non-Volatile Substances, 2005 (AS4482.1-2005)

AS 4482.2-1999, Guide to the Investigation and Sampling of Site with Potentially Contaminated Soil, Part 2: Volatile Substances, 2005 (AS4482.2-1999)

Department of Environment, Land, Water & Planning. (2019). *Groundwater Resource Report* [VICGRID94 Easting: 2500645 Northing: 2417373].

Department of Environment, Land, Water & Planning, Potentially Contaminated Land, Planning Practice Note 30, July 2021.

Environment Protection Act 2017, Environmental Reference Standard, No. S 245, May 2021.

Environmental Protection Authority (EPA, 1915), Contaminated land policy, February 2021.

Environmental Protection Authority (EPA, 1940), Contaminated land: Understanding section 35 of the Environment Protection Act 2017, February 2021.

Environment Protection Regulations (EPR) 2021. S.R. No. 47/2021, 25 May 2021.

EPA Victoria (2021) Waste disposal categories – characteristics and thresholds. Publication 1828.2, March 2021.

EPA Victoria (2009) Soil Sampling. Publication 702 (June 2009).

LotSearch. (2022). LotSearch Enviro Professional, 124 Hopetoun Park, Hopetoun Park, VIC 3188, (22 April 2022, Ref: LS031410 EP).

National Environment Protection Council (NEPC), National Environment Protection (Assessment of Site Contamination) Amendment Measure 2013 (No.1) – Amendment of the National Environment Protection (Assessment of Site Contamination) Measure (NEPM), 1999 (NEPM 2013).

Victorian Government Gazette (2021), Environment Reference Standard. No. S 245 Wednesday 26 May 2021

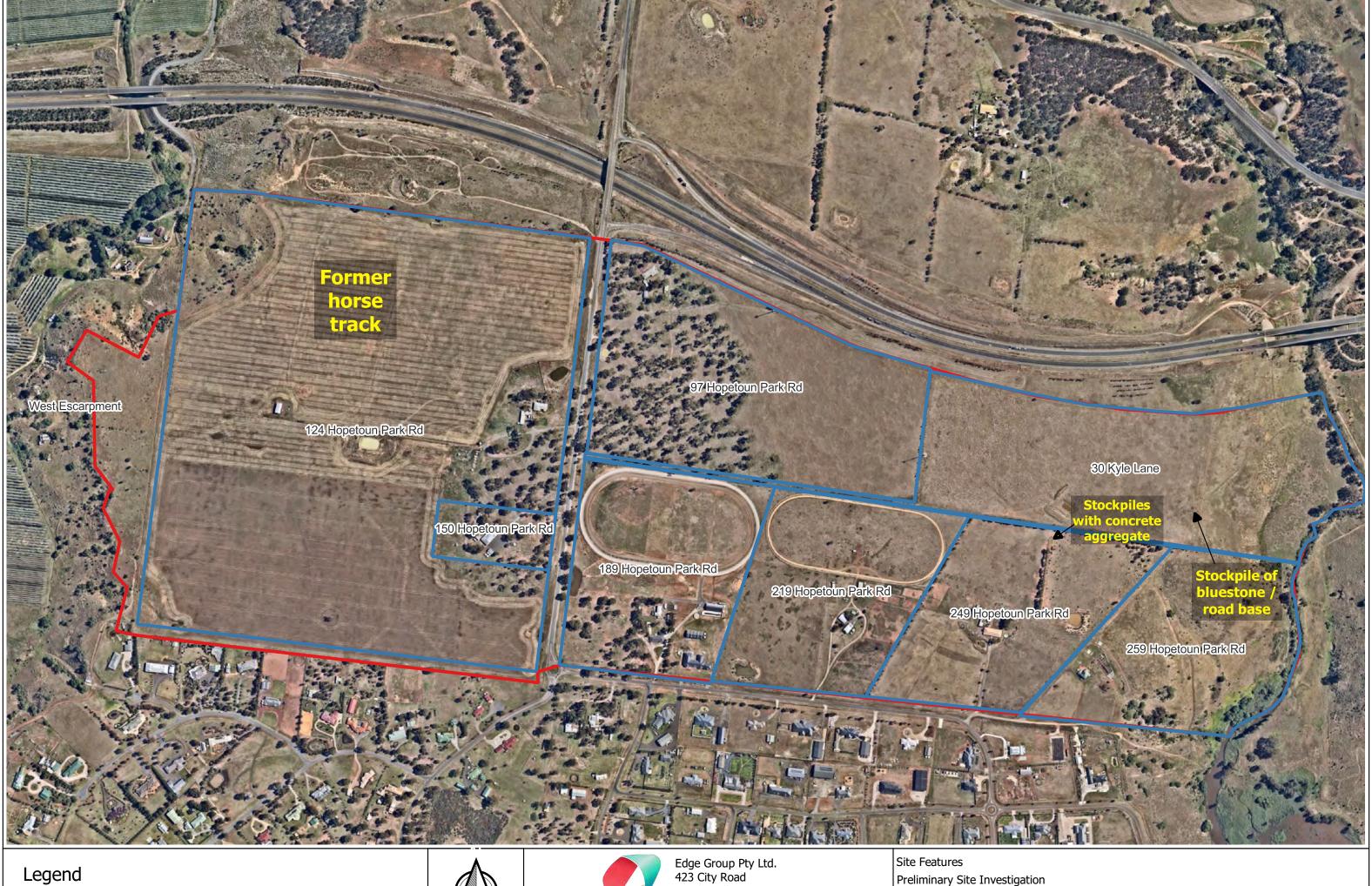
Victorian Government, Planning and Environment Act 1987 Section 12 (2) (a). Ministerial Direction No.1, 1987

Figures

Figure 1

Site Location & Surrounding Land Uses

Edge Group Pty Ltd. 423 City Road South Melbourne, Victoria 3205 Phone: (03) 8625 9696 info@edgegroup.net.au www.edgegroup.net.au


Site Location Plan
Preliminary Site Investigation
264 Plenty Road, Preston, VIC

٧3	Drawn: ND	Date: 20/07/2022	Figure 1
٦,	Rev.: 1	Proiect No.: 20220134	riguici

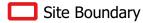


Figure 2

Site Features

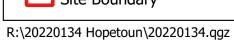
Site Addresses

Edge Group Pty Ltd. 423 City Road South Melbourne, Victoria 3205 Phone: (03) 8625 9696 info@edgegroup.net.au www.edgegroup.net.au

Preliminary Site Investigation 264 Plenty Road, Preston, VIC

Date: 20/07/2022 Drawn: ND А3 Figure 2 Proiect No.: 20220134

Figure 3


Borehole Location Plan

Rev.: 1

Proiect No.: 20220134

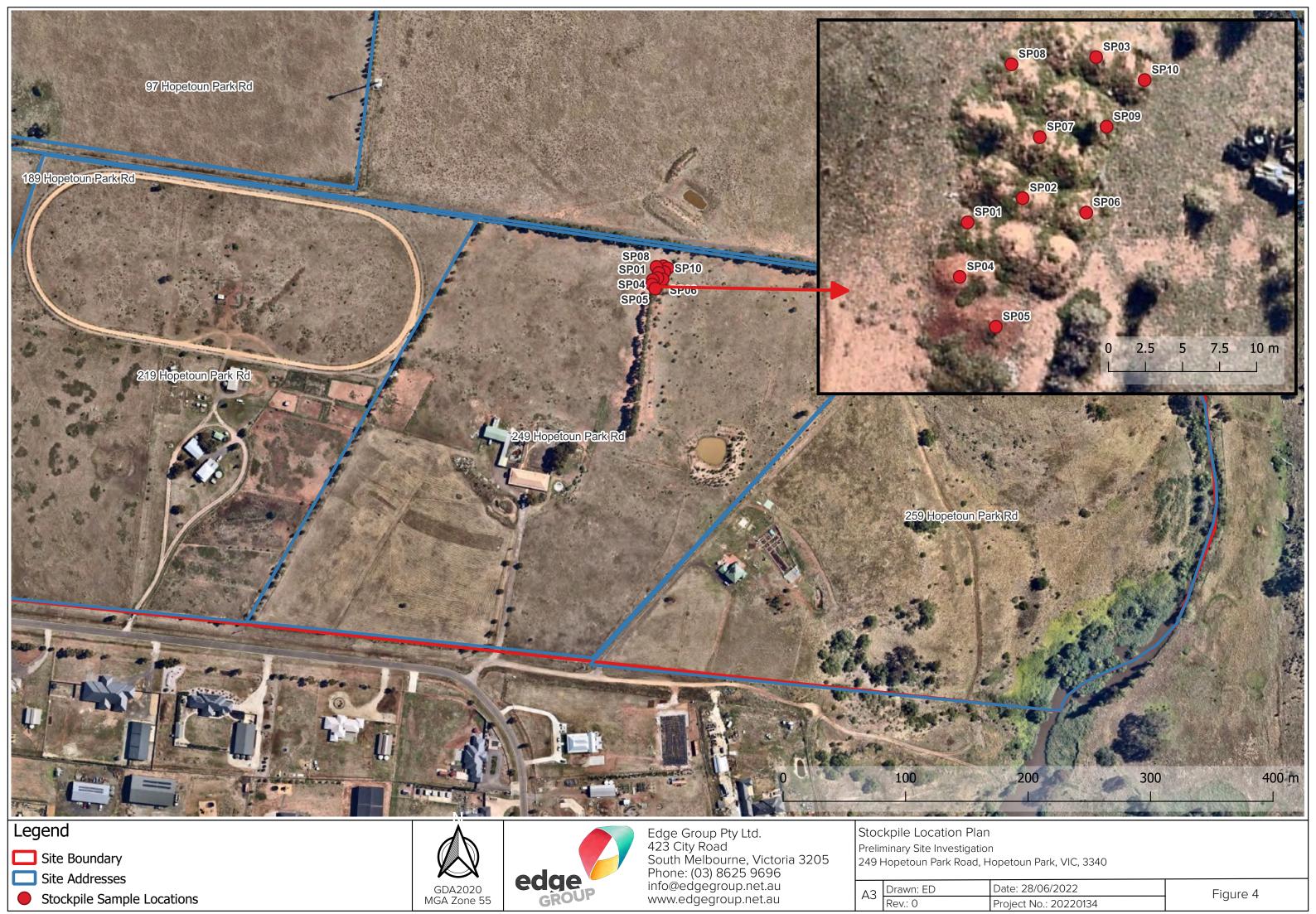

MGA Zone 55

Figure 4

Stockpile Location Plan

Appendices

Appendix A – Laboratory Analytical Results

Table A1 – Soil Analytical Results: On Site Retention

Table A2 – Soil Analytical Results: Off-site Disposal

Table A3 – RPDs

Table A4 – Field Blanks

Site Specific EIL Calculations

				Chemical Group	Acid Sulphate Soils	Parti	icle Size	Particulates				ВТ	EX				Cyanides				TRH			
				Analyte	pH (CaCl2)	Clay in solls <2 um	Density	Organic Matter	Naphthalene (VOC)	Benzene	Toluene	Ethylbenzene	Xylene (m & p)	Xylene (o)	Xylene Total	Total BTEX	Cyanide (WAD)	C6-C10 Fraction (F1)	C6-C10 (F1 minus BTEX)	>C10-C16 Fraction (F2)	>C10-C16 Fraction (F2 minus Naphthalene)	>C16-C34 Fraction (F3)	>C34-C40 Fraction (F4)	>C10-C40 Fraction (Sum)
				Unit	-	%	g/cm3	%	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
				LOR	0.1	1 1	0.01	0.5	1	0.2	0.5	0.5	0.5	0.5	0.5	0.2	1	10	10	50	50	100	100	50
		1	Res A/B. Clav	>=0m. <1m	*		*	*	5	0.7	480	*	*	*	110	*	*	*	50	*	280	*	*	*
		HSLs Vapour		· ·	*		*	*	3	0.7	160	55	*	*	40	*	*	*	45	*	110	*	*	*
		Intrusion ¹	Res A/B, Sand	>=0m, <1m			*	*	4	_		55 *	*	*		*	*	*	45	*		*	*	*
NEDI	M 2013	2	Res A/B, Silt	>=0m, <1m			*	*		0.6	390				95	*	*	*	40	*	230	*		
NEPI	M 2013	ElLs ²		& Public Open Space		- 1			170				•	•					•				*	•
		ESLs ³	Urban Res, Coarse Soi		*	*	*	*	*	50	85	70	*	*	105	*	*	*	180	120	120	300	2,800	*
			Urban Res, Fine Soil	>=0m, <2m	*	*	*	*	*	65	105	125	*	*	45	*	*	*	180	120	120	1,300	5,600	*
		HILs⁴		Res A	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
			I																					
Committee Consta	The second second	EL LUIS	Depth	Advance of the control of the contro																				
Sample Code	Location	Field ID	Date Depth (mbgl)	Matrix Type																				
EM2211061001	Location	BH01 - 0.1	9/06/2022 0.1	Matrix Type FILL - Sandy CLAY	-	-	-	-	<1	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2	<1	<10	<10	<50	<50	<100	<100	<50
EM2211061001 EM2211061002	Location	BH01 - 0.1 BH01 - 0.5	9/06/2022 0.1 9/06/2022 0.5	FILL - Sandy CLAY NAT- Silty CLAY	- -		-	-	<1 -	<0.2	<0.5 -	<0.5 -	<0.5 -	<0.5 -	<0.5	<0.2	<1 -	<10 -	<10	<50 -	<50 -	<100	<100	<50 -
EM2211061001 EM2211061002 EM2211061004	Location	BH01 - 0.1 BH01 - 0.5 BH02 - 0.1	9/06/2022 0.1 9/06/2022 0.5 9/06/2022 0.1	FILL - Sandy CLAY NAT- Silty CLAY FILL - Sandy CLAY	-				4 - 4	<0.2 - <0.2	<0.5 - <0.5	<0.5 - <0.5	<0.5 - <0.5	<0.5 - <0.5	<0.5 - <0.5	-0.2	<1 - -	<10 - <10	<10 - <10	<50 - <50		<100 - <100	<100	<50 - <50
EM2211061001 EM2211061002 EM2211061004 EM2211061007		BH01 - 0.1 BH01 - 0.5 BH02 - 0.1 BH03 - 0.1	9/06/2022 0.1 9/06/2022 0.5 9/06/2022 0.1 9/06/2022 0.1 9/06/2022 0.1	FILL - Sandy CLAY NAT- Silty CLAY FILL - Sandy CLAY FILL - Sandy CLAY	-	- - -	- - -	-	্ব - ব	_	<0.5 <0.5	<0.5 <0.5	<0.5 - <0.5 <0.5		<0.5 <0.5	- <0.2 <0.2		<10 <10	_		- <50 <50			<50 <50
EM2211061001 EM2211061002 EM2211061004 EM2211061007 EM2211061008	Location Horse Training Track	BH01 - 0.1 BH01 - 0.5 BH02 - 0.1 BH03 - 0.1 BH03 - 0.5	9/06/2022 0.1 9/06/2022 0.5 9/06/2022 0.5 9/06/2022 0.1 9/06/2022 0.1 9/06/2022 0.5	FILL - Sandy CLAY NAT- Silty CLAY FILL - Sandy CLAY FILL - Sandy CLAY Clayey SILT			- - -	-	4 4 4	_	<0.5	<0.5 <0.5	<0.5 - <0.5 <0.5		<0.5	<0.2 <0.2	-	<10 <10 -	_	<50 <50	- <50 <50	<100 <100 -	<100	<50 <50
EM2211061001 EM2211061002 EM2211061004 EM2211061007 EM2211061008 EM2211061010	Horse Training	BH01 - 0.1 BH01 - 0.5 BH02 - 0.1 BH03 - 0.1 BH03 - 0.5 BH04 - 0.1	9/06/2022 0.1 9/06/2022 0.5 9/06/2022 0.5 9/06/2022 0.1 9/06/2022 0.1 9/06/2022 0.5 9/06/2022 0.1	FILL - Sandy CLAY NAT- Silty CLAY FILL - Sandy CLAY FILL - Sandy CLAY Clayey SILT FILL - Clayey SAND			- - -	- - -	4 - 4 - -	<0.2 <0.2	<0.5 <0.5	<0.5 <0.5 - <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5 - <0.5	- <0.2 <0.2	-	<10 <10	<10 <10	<50 <50	- <50 <50 - <50	<100 <100 - <100	<100 <100	<50 <50 - <50
EM2211061001 EM2211061002 EM2211061004 EM2211061007 EM2211061010 EM2211061010	Horse Training	BH01 - 0.1 BH01 - 0.5 BH02 - 0.1 BH03 - 0.1 BH03 - 0.5 BH04 - 0.1 BH05 - 0.1	9/06/2022 0.1 9/06/2022 0.5 9/06/2022 0.1 9/06/2022 0.1 9/06/2022 0.1 9/06/2022 0.5 9/06/2022 0.1 9/06/2022 0.1	FILL - Sandy CLAY NAT- Silty CLAY FILL - Sandy CLAY FILL - Sandy CLAY Clayey SILT FILL - Clayey SAND FILL - Gravelly CLAY			- - - -	- - - - -	<1 <1	<0.2 <0.2 - <0.2 <0.2	<0.5 <0.5 - <0.5 <0.5	<0.5 <0.5 - <0.5 <0.5	<0.5 <0.5 - <0.5 <0.5	<0.5 <0.5 - <0.5 <0.5	<0.5 <0.5 - <0.5 <0.5	<0.2 <0.2 <0.2 - <0.2 <0.2	- - - -	<10 <10 - <10 <10	<10 <10 - <10 <10	<50 <50 - <50 <50	- <50 <50 - <50 <50	<100 <100 - <100 <100	<100 <100 - <100 <100	<50 <50 - <50 <50
EM2211061001 EM2211061002 EM2211061004 EM2211061007 EM22110610108 EM2211061013 EM2211061014	Horse Training	BH01 - 0.1 BH01 - 0.5 BH02 - 0.1 BH03 - 0.1 BH03 - 0.5 BH04 - 0.1 BH05 - 0.1	9/06/2022 0.1 9/06/2022 0.5 9/06/2022 0.5 9/06/2022 0.1 9/06/2022 0.1 9/06/2022 0.1 9/06/2022 0.1 9/06/2022 0.1 9/06/2022 0.5	FILL - Sandy CLAY NAT- Silty CLAY FILL - Sandy CLAY FILL - Sandy CLAY Clayey SILT FILL - Clayey SAND FILL - Gravelly CLAY NAT- Silty CLAY			- - - - -		4 4 4 -	<0.2 <0.2	<0.5 <0.5 - <0.5 <0.5	<0.5 <0.5 - <0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5 - <0.5 <0.5	- <0.2 <0.2 - <0.2 - <0.2	- - - -	<10 <10 - <10	<10 <10	<50 <50 - <50 <50	- <50 <50 - <50 <50	<100 <100 - <100 <100	<100 <100	<50 <50 - <50 <50
EM2211061001 EM2211061002 EM2211061004 EM2211061007 EM22110610108 EM2211061010 EM2211061013 EM2211061014 EM2211061016	Horse Training	BH01 - 0.1 BH01 - 0.5 BH02 - 0.1 BH03 - 0.1 BH03 - 0.5 BH04 - 0.1 BH05 - 0.1 BH05 - 0.5 BH06 - 0.1	9/06/2022 0.1 9/06/2022 0.5 9/06/2022 0.1 9/06/2022 0.1 9/06/2022 0.5 9/06/2022 0.5 9/06/2022 0.1 9/06/2022 0.1 9/06/2022 0.5 9/06/2022 0.5 9/06/2022 0.5	FILL - Sandy CLAY NAT- Silty CLAY FILL - Sandy CLAY FILL - Sandy CLAY Clayey SILT FILL - Clayey SAND FILL - Gravelly CLAY NAT- Silty CLAY FILL - Sandy CLAY			- - - - - -		<1 <1	<0.2 <0.2 - <0.2 <0.2	<0.5 <0.5 - <0.5 <0.5 - <0.5	<0.5 <0.5 - <0.5 <0.5 - <0.5	<0.5 <0.5 - <0.5 <0.5	<0.5 <0.5 - <0.5 <0.5	<0.5 <0.5 - <0.5 <0.5 - <0.5	<0.2 <0.2 - <0.2 - <0.2 - <0.2	- - - - -	<10 <10 -10 -10 -10 -10 -10 -10	<10 <10 - <10 <10	<50 <50 - <50 <50 - <50	- <50 <50 - <50 <50 <50 -	<100 <100 - <100 <100 - <100	<100 <100 - <100 <100	<50 <50 - <50 <50 - <50
EM2211061001 EM2211061002 EM2211061004 EM2211061007 EM2211061010 EM2211061010 EM2211061013 EM2211061014 EM2211061016 EM2211061020	Horse Training	BH01 - 0.1 BH01 - 0.5 BH02 - 0.1 BH03 - 0.1 BH03 - 0.5 BH04 - 0.1 BH05 - 0.1 BH05 - 0.5 BH06 - 0.1 SP01	9/06/2022 0.1 9/06/2022 0.5 9/06/2022 0.1 9/06/2022 0.1 9/06/2022 0.5 9/06/2022 0.5 9/06/2022 0.1 9/06/2022 0.1 9/06/2022 0.1 9/06/2022 0.5 9/06/2022 0.1 9/06/2022 0.1	FILL - Sandy CLAY NAT- Silty CLAY FILL - Sandy CLAY FILL - Sandy CLAY Clayey SILT FILL - Clayey SAND FILL - Gravelly CLAY NAT- Silty CLAY FILL - Sandy CLAY FILL - Clay	- - - - - - - - - - 7.5		- - - - - -	- - - - - - -	<1 <1	<0.2 <0.2 - <0.2 <0.2 - <0.2 <0.2 <0.2	<0.5 <0.5 - <0.5 <0.5 - <0.5 - <0.5	<0.5 <0.5 - <0.5 <0.5 - <0.5 <0.5	<0.5 <0.5 - <0.5 <0.5 - <0.5 <0.5	<0.5 <0.5 - <0.5 <0.5 - <0.5 <0.5	<0.5 <0.5 - <0.5 <0.5 - <0.5 <0.5	<0.2 <0.2 <0.2 - <0.2 <0.2 - <0.2	- - - - - -	<10 <10 - <10 <10 - <10 <10 <10 - <10 <10 <10	<10 <10 - <10 <10 - <10 <10 <10 - <10 <10 <10 <10	<50 <50 - <50 <50 - <50 <50 <50	<50 <50 - <50 - <50 - <50 - <50 -	<100 <100 - <100 <100 - <100 -	<100 <100 - <100 <100 - <100 <100	<50 <50 - <50 <50 - <50 <50 <50
EM2211061001 EM2211061004 EM2211061007 EM2211061008 EM2211061010 EM2211061013 EM2211061014 EM2211061016 EM2211061020 EM2211061020	Horse Training Track	BH01 - 0.1 BH01 - 0.5 BH02 - 0.1 BH03 - 0.1 BH03 - 0.5 BH04 - 0.1 BH05 - 0.1 BH05 - 0.5 BH06 - 0.1 SP01	9/06/2022 0.1 9/06/2022 0.5 9/06/2022 0.1 9/06/2022 0.1 9/06/2022 0.5 9/06/2022 0.1 9/06/2022 0.1 9/06/2022 0.1 9/06/2022 0.5 9/06/2022 0.1 9/06/2022 0.1 9/06/2022 0.1 9/06/2022 0.1	FILL - Sandy CLAY NAT- Silty CLAY FILL - Sandy CLAY FILL - Sandy CLAY Clayey SILT FILL - Clayey SAND FILL - Gravelly CLAY NAT- Silty CLAY FILL - Sandy CLAY FILL - Clay FILL - Clay	- - - - - - - - - 7.5		- - - - - - -		<1 <1	<0.2 <0.2 - <0.2 <0.2	<0.5 <0.5 - <0.5 <0.5 - <0.5 - <0.5	<0.5 <0.5 - <0.5 <0.5 - <0.5 - <0.5	<0.5 <0.5 - <0.5 <0.5	<0.5 <0.5 - <0.5 <0.5	<0.5 <0.5 - <0.5 <0.5 - <0.5 - <0.5	<0.2 <0.2 <0.2 - <0.2 <0.2 - <0.2	- - - - - -	<10 <10 - <10 <10 - <10 <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 - <10 -	<10 <10 - <10 <10	<50 <50 - <50 <50 - <50 <50 -	<50 <50 <50 - <50 <50 - <50 -	<100 <100 - <100 <100 - <100 -	<100 <100 - <100 <100	<50 <50 - <50 <50 - <50 <50 -
EM2211061001 EM2211061004 EM2211061007 EM2211061008 EM2211061010 EM2211061013 EM2211061014 EM2211061014 EM2211061010 EM2211061020 EM2211061022 EM2211061024	Horse Training Track	BH01 - 0.1 BH01 - 0.5 BH02 - 0.1 BH03 - 0.1 BH03 - 0.5 BH04 - 0.1 BH05 - 0.1 BH05 - 0.5 BH06 - 0.1 SP01 SP03 SP05	9/06/2022 0.1 9/06/2022 0.5 9/06/2022 0.1 9/06/2022 0.1	FILL - Sandy CLAY NAT- Silty CLAY FILL - Sandy CLAY FILL - Sandy CLAY Clayey SILT FILL - Clayey SAND FILL - Gravelly CLAY NAT- Silty CLAY FILL - Sandy CLAY FILL - Clay FILL - Clay FILL - Clay FILL - Clay			- - - - - - - -		<1 <1	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<0.5 <0.5 - <0.5 <0.5 - <0.5 <0.5 - <0.5 <0.5	<0.5 <0.5 - <0.5 <0.5 - <0.5 <0.5 - <0.5	<0.5 <0.5 - <0.5 <0.5 - <0.5 - <0.5 <0.5	<0.5 <0.5 - <0.5 <0.5 - <0.5 <0.5 <0.5	<0.5 <0.5 - <0.5 <0.5 - <0.5 - <0.5 <0.5	<0.2 <0.2 <0.2 - <0.2 <0.2 - <0.2		<10 <10 <10 <10 <10 <10 <10 <10 <10 <10	<10 <10 <10 <10 <10 <10 <10 <10 <10 <10	<50 <50 <50 <50 <50 <50 <50 <50 <50 <50	<pre></pre>	<100 <100 - <100 <100 - <100 <100 - <100	<100 <100 - <100 <100 - <100 <100 - <100	<50 <50 <50
EM2211061001 EM2211061002 EM2211061004 EM2211061007 EM2211061008 EM2211061010 EM2211061014 EM2211061016 EM2211061020 EM2211061020 EM2211061024 EM2211061024	Horse Training Track	BH01 - 0.1 BH01 - 0.5 BH02 - 0.1 BH03 - 0.1 BH03 - 0.5 BH04 - 0.1 BH05 - 0.1 BH05 - 0.5 BH06 - 0.1 SP01 SP03 SP05 SP07	9/06/2022 0.1 9/06/2022 0.5 9/06/2022 0.1 9/06/2022 0.1	FILL - Sandy CLAY NAT- Silty CLAY FILL - Sandy CLAY FILL - Sandy CLAY Clayey SILT FILL - Clayey SAND FILL - Gravelly CLAY NAT- Silty CLAY FILL - Sandy CLAY FILL - Clay		-	- - - - - - - - - -		<1 <1	<0.2 <0.2 - <0.2 <0.2 - <0.2 <0.2 <0.2	<0.5 <0.5 - <0.5 <0.5 - <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 - <0.5 <0.5 - <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 - <0.5 <0.5 - <0.5 <0.5	<0.5 <0.5 - <0.5 <0.5 - <0.5 <0.5	<0.5 <0.5 - <0.5 <0.5 - <0.5 <0.5 <0.5 <0.5	<0.2 <0.2 <0.2 - <0.2 - <0.2 - <0.2 - <0.2		<10 <10 <10 <10 <10 <10 <10 <10 <10 <10	<10 <10 - <10 <10 - <10 <10 <10 - <10 <10 <10 <10	<50 <50 <50 <50 <50 <50 <50 <50 <50 <50	<pre></pre>	<100 <100 - <100 - <100 - <100 - <100 - <100 <100	<100 <100 - <100 - <100 - <100 - <100 - <100 <100	<50 <50 <50 <50 <50 <50 <50 <50 <50 <50
EM2211061001 EM2211061002 EM2211061004 EM2211061007 EM2211061008 EM2211061010 EM2211061013 EM2211061014 EM2211061016 EM2211061020 EM2211061022 EM2211061024 EM2211061028	Horse Training Track	BH01 - 0.1 BH01 - 0.5 BH02 - 0.1 BH03 - 0.5 BH03 - 0.5 BH04 - 0.1 BH05 - 0.1 BH05 - 0.5 BH06 - 0.1 SP01 SP03 SP05 SP07 SP09	9/06/2022 0.1 9/06/2022 0.5 9/06/2022 0.1 9/06/2022 0.1	FILL - Sandy CLAY NAT- Silty CLAY FILL - Sandy CLAY FILL - Sandy CLAY Clayey SILT FILL - Clayey SAND FILL - Gravelly CLAY NAT- Silty CLAY FILL - Sandy CLAY FILL - Clay					<1 <1	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<0.5 <0.5 - <0.5 <0.5 - <0.5 <0.5 - <0.5 <0.5	<0.5 <0.5 - <0.5 <0.5 - <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 - <0.5 <0.5 - <0.5 - <0.5 <0.5	<0.5 <0.5 - <0.5 <0.5 - <0.5 <0.5 <0.5	<0.5 <0.5 - <0.5 <0.5 - <0.5 - <0.5 <0.5	 <0.2 		<10 <10 <10 <10 <10 <10 <10 <10 <10 <10	<10 <10 <10 <10 <10 <10 <10 <10 <10 <10	<50 <50 <50 <50 <50 <50 <50 <50 <50 <50	<50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50	<100 <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100	<100 <100 - <100 - <100 - <100 - <100 - <100 - <100 - <100 <100	<50 <50 <50 <50 <50 <50 <50 <50 <50 <50
EM2211061001 EM2211061002 EM2211061004 EM2211061007 EM2211061008 EM2211061010 EM2211061014 EM2211061016 EM2211061020 EM2211061020 EM2211061024 EM2211061024 EM2211061028 EM2211061028 EM2211061028	Horse Training Track	BH01 - 0.1 BH01 - 0.5 BH02 - 0.1 BH03 - 0.5 BH03 - 0.5 BH04 - 0.1 BH05 - 0.1 BH05 - 0.5 BH06 - 0.1 SP01 SP03 SP05 SP07 SP09 BH07 - 0.1	9/06/2022 0.1 9/06/2022 0.5 9/06/2022 0.1 9/06/2022 0.1	FILL - Sandy CLAY NAT- Silty CLAY FILL - Sandy CLAY FILL - Sandy CLAY Clayey SILT FILL - Clayey SAND FILL - Gravelly CLAY NAT- Silty CLAY FILL - Sandy CLAY FILL - Clay					<1 <1	<0.2 <0.2 - <0.2 <0.2 - <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<0.5 <0.5 - <0.5 <0.5 - <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 - <0.5 <0.5 - <0.5 - <0.5 <0.5	<0.5 <0.5 - <0.5 <0.5 - <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 - <0.5 <0.5 - <0.5 <0.5 <0.5 <0.5 <0.5	 <0.2 		<10	<10 <10 <10 <10 <10 <10 <10 <10 <10 <10	<50 <50 <50 <50 <50 <50 <50 <50 <50 <50	- <50 <50 <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <- <50 <->	<100 <100 - <100 - <100 - <100 - <100 - <100 <100	<100 <100 - <100 - <100 - <100 - <100 - <100 <100	<50 <50 <50 <50 <50 <50 <50 <50 <50 <50
EM2211061001 EM2211061002 EM2211061004 EM2211061007 EM2211061010 EM2211061011 EM2211061014 EM2211061014 EM2211061020 EM2211061020 EM2211061024 EM2211061028 EM2211061028 EM2211061030	Horse Training Track	BH01 - 0.1 BH01 - 0.5 BH02 - 0.1 BH03 - 0.1 BH03 - 0.5 BH04 - 0.1 BH05 - 0.1 BH05 - 0.5 BH06 - 0.1 SP01 SP03 SP05 SP07 SP09 BH07 - 0.1 BH08 - 0.1	9/06/2022 0.1 9/06/2022 0.5 9/06/2022 0.1 9/06/2022 0.1	FILL - Sandy CLAY NAT- Silty CLAY FILL - Sandy CLAY FILL - Sandy CLAY FILL - Sandy CLAY Clayey SILT FILL - Clayey SAND FILL - Gravelly CLAY NAT- Silty CLAY FILL - Sandy CLAY FILL - Clayey SLIT		- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -		<1 <1	<0.2 <0.2 - <0.2 <0.2 - <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 - <0.5 <0.5 - <0.5 - <0.5 <0.5	<0.5 <0.5 - <0.5 <0.5 - <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	-0.2 -0.2 -0.2 -0.2 -0.2 		<10 <10 <10 <10 <10 <10 <10 <10 <10 <10	<10 <10 <10 <10 <10 <10 <10 <10 <10 <10	<50 <50 <50 <50 <50 <50 <50 <50 <50 <50	<50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50	<100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100	<100 <100 -100 <100 -100 -100 -100 -100	<50 <50 <50 <50 <50 <50 <50 <50 <50 <50
EM2211061001 EM2211061004 EM2211061007 EM2211061008 EM2211061010 EM2211061013 EM2211061016 EM2211061016 EM2211061020 EM2211061020 EM2211061024 EM2211061026 EM2211061028 EM2211061030 EM2211061030 EM2211061030	Horse Training Track	BH01 - 0.1 BH01 - 0.5 BH02 - 0.1 BH03 - 0.1 BH03 - 0.5 BH04 - 0.1 BH05 - 0.1 BH06 - 0.1 SP01 SP03 SP05 SP07 SP09 BH07 - 0.1 BH08 - 0.1 BH08 - 0.1	9/06/2022 0.1 9/06/2022 0.5 9/06/2022 0.5 9/06/2022 0.1	FILL - Sandy CLAY NAT - Sitty CLAY FILL - Sandy CLAY FILL - Sandy CLAY FILL - Sandy CLAY Clayey SILT FILL - Clayey SAND FILL - Gravelly CLAY NAT - Sitty CLAY FILL - Sandy CLAY FILL - Clay				1	<1 <1	<pre><0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2</pre>	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<pre><0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5</pre>	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	 <0.2 		<10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	<10 <10 <10 <10 <10 <10 <10 <10 <10 <10	<50 <50 <50 <50 <50 <50 <50 <50 <50 <50	- <50 <50 - <50	<100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100	<100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100	<50 <50 <50 <50 <50 <50 <50 <50 <50 <50
EM2211061001 EM2211061002 EM2211061004 EM2211061007 EM2211061010 EM2211061011 EM2211061014 EM2211061014 EM2211061020 EM2211061020 EM2211061024 EM2211061028 EM2211061028 EM2211061030	Horse Training Track	BH01 - 0.1 BH01 - 0.5 BH02 - 0.1 BH03 - 0.1 BH03 - 0.5 BH04 - 0.1 BH05 - 0.1 BH05 - 0.5 BH06 - 0.1 SP01 SP03 SP05 SP07 SP09 BH07 - 0.1 BH08 - 0.1 BH09 - 0.5 BH09 - 0.1	9/06/2022 0.1 9/06/2022 0.5 9/06/2022 0.1 9/06/2022 0.1	FILL - Sandy CLAY NAT- Silty CLAY FILL - Sandy CLAY FILL - Sandy CLAY FILL - Sandy CLAY Clayey SILT FILL - Clayey SAND FILL - Gravelly CLAY NAT- Silty CLAY FILL - Sandy CLAY FILL - Clayey SLIT				- - - - - - - - - - - - 1 - - - - - - -	<1 <1	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<pre><0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5</pre>	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 - <0.5 - <0.5 - <0.5 - <0.5 - <0.5 - <0.5 - <0.5 - <0.5 <0.5 <0.5 <0.5 <0.5			10 10 10 10 10 10 10 10	<10 <10 <10 <10 <10 <10 <10 <10 <10 <10	<50 <50 <50 <50 <50 <50 <50 <50 <50 <50	- <50 <50 - <50 - <50 - <50 - <50 - <50 <50 - <50 - <50	<100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100	<100 <100 -100 <100 -100 -100 -100 -100	<50 <50 <50 <50 <50 <50 <50 <50 <50 <50
EM2211061001 EM2211061004 EM2211061007 EM2211061008 EM2211061010 EM2211061013 EM2211061014 EM2211061014 EM2211061020 EM2211061020 EM2211061021 EM2211061021 EM2211061021 EM2211061021 EM2211061021 EM2211061031 EM2211061031	Horse Training Track	BH01 - 0.1 BH01 - 0.5 BH02 - 0.1 BH03 - 0.1 BH03 - 0.5 BH04 - 0.1 BH05 - 0.1 BH06 - 0.1 SP01 SP03 SP05 SP07 SP09 BH07 - 0.1 BH08 - 0.1 BH08 - 0.1	9/06/2022 0.1 9/06/2022 0.5 9/06/2022 0.5 9/06/2022 0.1	FILL - Sandy CLAY NAT - Silty CLAY FILL - Sandy CLAY FILL - Sandy CLAY FILL - Sandy CLAY Clayey SILT FILL - Clayey SAND FILL - Gravelly CLAY NAT - Silty CLAY FILL - Sandy CLAY FILL - Clay	7.5 - - - - - - - - - - - - - - - - - - -			- - - - - - - - - - - 1 1 - - -	<1 <1	<pre><0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2</pre>	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<pre><0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5</pre>	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	 	- - - - - - - - - - - - - - - - - - -	<10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	<10 <10 <10 <10 <10 <10 <10 <10 <10 <10	<50 <50 <50 - <50 - <50 - <50 - <50 - <50 <50 - <50 <50 <50 <50 <50 <50 <420	-	<100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <10	-100 -10	<50 <50 <50 < 60 < 50 < 50 < 50 < 50 < 5
EM2211061001 EM2211061004 EM2211061007 EM2211061008 EM2211061010 EM2211061013 EM2211061014 EM2211061012 EM2211061020 EM2211061021 EM2211061024 EM2211061028 EM2211061028 EM2211061031 EM2211061031 EM2211061031 EM2211061033	Horse Training Track	BH01 - 0.1 BH01 - 0.5 BH02 - 0.1 BH03 - 0.1 BH03 - 0.5 BH04 - 0.1 BH05 - 0.1 BH05 - 0.5 BH06 - 0.1 SP01 SP03 SP05 SP07 SP09 BH07 - 0.1 BH08 - 0.1 BH08 - 0.1 BH09 - 0.5 BH09 - 0.1	9/06/2022 0.1 9/06/2022 0.5 9/06/2022 0.1	FILL - Sandy CLAY NAT- Silty CLAY FILL - Sandy CLAY FILL - Sandy CLAY FILL - Sandy CLAY Clayey SILT FILL - Clayey SAND FILL - Gravelly CLAY NAT- Silty CLAY FILL - Sandy CLAY FILL - Clay With Silt FILL - Silty CLAY FILL - Silty CLAY					<1 <1	<pre><0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2</pre>	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<pre><0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5</pre>	-0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2		<10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	<10 <10 <10 <10 <10 <10 <10 <10 <10 <10	<50 <50 <50 <50 <50 <50 <50 <50 <50 <50	-	-100 -100 -100 -100 -100 -100 -100 -100	100 100	<50 <50 <50 <50 <50 <50 <50 <50 <50 <50
EM2211061001 EM2211061004 EM2211061007 EM2211061008 EM2211061010 EM2211061013 EM2211061014 EM2211061014 EM2211061012 EM2211061020 EM2211061024 EM2211061028 EM2211061028 EM2211061031 EM2211061031 EM2211061031 EM2211061033 EM2211061036 EM2211061037	Horse Training Track	BH01 - 0.1 BH01 - 0.5 BH02 - 0.1 BH03 - 0.5 BH03 - 0.5 BH04 - 0.1 BH05 - 0.1 BH05 - 0.5 BH06 - 0.1 SP01 SP03 SP05 SP07 SP09 BH07 - 0.1 BH08 - 0.1 BH09 - 0.5 BH09 - 0.5 BH09 - 0.5	9/06/2022 0.1 9/06/2022 0.5 9/06/2022 0.1	FILL - Sandy CLAY NAT- Silty CLAY FILL - Sandy CLAY FILL - Sandy CLAY FILL - Sandy CLAY Clayey SILT FILL - Clayey SAND FILL - Gravelly CLAY NAT- Silty CLAY FILL - Sandy CLAY FILL - Silty CLAY FILL - Silty CLAY NAT - CLAY with silt					<1 <1	<pre><0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2</pre>	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	 <0.5 			10 10 10 10 10 10 10 10	<10 <10 <10 <10 <10 <10 <10 <10 <10 <10	<50 <50 <50 <50 <50 <50 <50 <50 <50 <50	- <50 <50 <50 <50 <50 <50 <50 <50 <50 <50	<100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <10	100 100	<50 <50 <50 <50 <50 <50 <50 <50 <50 <50
EM2211061001 EM2211061002 EM2211061007 EM2211061008 EM2211061010 EM2211061013 EM2211061014 EM2211061016 EM2211061020 EM2211061024 EM2211061024 EM2211061028 EM2211061030 EM2211061031 EM2211061031 EM2211061033	Horse Training Track	BH01 - 0.1 BH01 - 0.5 BH02 - 0.1 BH03 - 0.1 BH03 - 0.5 BH04 - 0.1 BH05 - 0.1 BH05 - 0.1 BH05 - 0.5 BH06 - 0.1 SP01 SP03 SP05 SP07 SP09 BH07 - 0.1 BH08 - 0.1 BH09 - 0.5 BH09 - 0.1 BH10 - 0.1 BH10 - 0.1 BH10 - 0.1	9/06/2022 0.1 9/06/2022 0.5 9/06/2022 0.1	FILL - Sandy CLAY NAT- Silty CLAY FILL - Sandy CLAY FILL - Sandy CLAY FILL - Sandy CLAY Clayey SILT FILL - Clayey SAND FILL - Gravelly CLAY NAT- Silty CLAY FILL - Sandy CLAY FILL - Silty CLAY NAT - CLAY with silt FILL - Silty CLAY					<1 <1	<pre><0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2</pre>	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	 <0.5 		- - - - - - - - - - - - - - - - - - -	<10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	<10 <10 <10 <10 <10 <10 <10 <10 <10 <10	<50 <50 <50 <50 <50 <50 <50 <50 <50 <50	-	<100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <10	100 100	<50 <50 <50 <50 <50 <50 <50 <50 <50 <50

1 - NEPM 2013 Comm/Ind D and Res A/B HSL for Vapour Intrusion
2 - NEPM 2013 - Generic Ecological Investigation Levels: Comm/Ind and Urban Residential and Public Spaces
3 - NEPM 2013 Table 1B(6) ESLs for Comm/Ind and Urban Res

4 - NEPM 2013 Table 1A(1) HILs Res A, B and Comm/Ind D Soil LOR - Limit of Reporting

NL - Not limiting

Shading indicates analyte exceeds the relevant trigger value (highest criterion applied).

< Result is less than the laboratory limit of reporting (LOR)

* No Relevant Criteria

- Analysis not performed

s - Site Specific EIL

5/07/2022 Page 1 of 9

				Chemical Group											Phenols										
				Analyte	3&4-Methylphenol (m&p-cresol)	2,3,5,6- Tetrachlorophenol	2,4,5-Trichlorophenol	2,4,6-Trichlorophenol	2,4-Dichlorophenol	2,4-Dimethylphenol	2,4-Dinitrophenol	2,6-Dichlorophenol	2,3,4,5 & 2,3,4,6- Tetrachlorophenol	2-Chlorophenol	2-Methylphenol	2-Nitrophenol	4,6-Dinitro-2- methylphenol	4,6-Dinitro-o- cyclohexyl phenol	4-chloro-3- methylphenol	4-Nitrophenol	Pentachlorophenol	Picloram	Phenol	Phenols (halogenated) EPAVic	Phenols (non- halogenated) EPAVic
				Unit	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
				LOR	1	0.03	0.05	0.05	0.03	0.5	5	0.03	0.05	0.03	0.5	0.5	5	5	0.03	5	0.2	0.02	0.5	0.03	1
		1161 - 1/	Res A/B, Clay	>=0m, <1m	*	*	*	*	*	*		*	*	*	*	*	*	*	*	*	*	*	*	*	*
		HSLs Vapour	Res A/B, Sand	>=0m, <1m	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
		Intrusion'	Res A/B, Silt	>=0m, <1m	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
NEP	PM 2013	EILs ²		Public Open Space	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
			Urban Res, Coarse Soil	>=0m, <2m	*	*	*	*		*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
		ESLs ³	Urban Res, Fine Soil	>=0m, <2m	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
		HILs ⁴		Res A		*								*	*	*	*	*	*	*	100	4,500	3,000	*	*
		TIILS		NC3 A																	100	1,500	3,000		
			Depth Depth																						
Sample Code	Location	Field ID	Date (mbgl)	Matrix Type																					
EM2211061001		BH01 - 0.1	9/06/2022 0.1	FILL - Sandy CLAY	<1	-	<0.5	<0.5	<0.5	<0.5	-	<0.5	-	< 0.5	<0.5	< 0.5	-	-	<0.5	-	<2	<0.02	<0.5	-	-
EM2211061002		BH01 - 0.5	9/06/2022 0.5	NAT- Silty CLAY	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-
EM2211061004	_	BH02 - 0.1	9/06/2022 0.1	FILL - Sandy CLAY	-	ı	-	-	_						1										_
EM2211061007	Horse Training	BH03 - 0.1				-				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EM2211061008 EM2211061010	Track	DUO OF	9/06/2022 0.1	FILL - Sandy CLAY	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		BH03 - 0.5	9/06/2022 0.5	Clayey SILT	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		- - -
IEM2244064042	-	BH04 - 0.1	9/06/2022 0.5 9/06/2022 0.1	Clayey SILT FILL - Clayey SAND	-	- - -	- - -	-		- - -	- - -	-	- - -	- - -	-	-	-	-	-	-	-	-	- - -	- - -	- - -
EM2211061013		BH04 - 0.1 BH05 - 0.1	9/06/2022 0.5 9/06/2022 0.1 9/06/2022 0.1	Clayey SILT FILL - Clayey SAND FILL - Gravelly CLAY	- - -	-	- - -	- - -	- - -	- - -	- - -	- - -	- - -	- - - -	- - -	- - - -	- - -	- - -	- - -	- - -	- - -	- - -	- - -	- - - -	- - - -
EM2211061014		BH04 - 0.1 BH05 - 0.1 BH05 - 0.5	9/06/2022 0.5 9/06/2022 0.1 9/06/2022 0.1 9/06/2022 0.5	Clayey SILT FILL - Clayey SAND FILL - Gravelly CLAY NAT- Silty CLAY	-	- - - -	- - -	- - - -		- - -	- - -	- - - -	- - -	- - -	- - -	-	-	-	- - - -	-	-	- - -	- - - -	- - -	- - -
	-	BH04 - 0.1 BH05 - 0.1	9/06/2022 0.5 9/06/2022 0.1 9/06/2022 0.1	Clayey SILT FILL - Clayey SAND FILL - Gravelly CLAY	- - -	- - - - - - <0.03	- - -	- - -	-	- - - -	- - - -	- - -	- - - -	-	- - -	- - -	- - -	- - -	- - -		-	- - -	- - -	- - - -	- - - -
EM2211061014 EM2211061016	-	BH04 - 0.1 BH05 - 0.1 BH05 - 0.5 BH06 - 0.1	9/06/2022 0.5 9/06/2022 0.1 9/06/2022 0.1 9/06/2022 0.5 9/06/2022 0.1	Clayey SILT FILL - Clayey SAND FILL - Gravelly CLAY NAT- Silty CLAY FILL - Sandy CLAY	- - -			- - - -	-	- - - -	- - - - -	- - - -	- - - -	- - - -	- - - -	- - -	- - -	- - -	- - - -		-	- - - -	- - - - -	- - - - -	- - - -
EM2211061014 EM2211061016 EM2211061020	Stockpile	BH04 - 0.1 BH05 - 0.1 BH05 - 0.5 BH06 - 0.1 SP01	9/06/2022 0.5 9/06/2022 0.1 9/06/2022 0.1 9/06/2022 0.5 9/06/2022 0.1 9/06/2022 0.1	Clayey SILT FILL - Clayey SAND FILL - Gravelly CLAY NAT- Silty CLAY FILL - Sandy CLAY FILL - Clay	- - - - -		- - - - - <0.05	- - - - - <0.05	- - <0.03	- - - - -	- - - - - - -	- - - - - <0.03	- - - - - <0.05	- - - - - <0.03	- - - - -	- - - - -	- - - - - - - <5	- - - - - - <5	- - - - - <0.03	- - - - - - <5	- - - - - <0.2	- - - - -	-	- - - - - <0.03	- - - - -
EM2211061014 EM2211061016 EM2211061020 EM2211061022 EM2211061024 EM2211061026		BH04 - 0.1 BH05 - 0.1 BH05 - 0.5 BH06 - 0.1 SP01 SP03 SP05 SP07	9/06/2022 0.5 9/06/2022 0.1 9/06/2022 0.5 9/06/2022 0.5 9/06/2022 0.1 9/06/2022 0.1 9/06/2022 0.1 9/06/2022 0.1 9/06/2022 0.1 9/06/2022 0.1	Clayey SILT FILL - Clayey SAND FILL - Gravelly CLAY NAT- Slity CLAY FILL - Sandy CLAY FILL - Clay	- - - - - -	<0.03	< 0.05	- - - - - <0.05	- - <0.03	- - - - - -	- - - - - - <5	- - - - - <0.03	- - - - - <0.05	< 0.03			- - - - - - <5	<5	- - - - - <0.03	- - - - - - <5	< 0.2			- - - - - - - <0.03	- - - - - -
EM2211061014 EM2211061016 EM2211061020 EM2211061022 EM2211061024 EM2211061026 EM2211061028		BH04 - 0.1 BH05 - 0.1 BH05 - 0.5 BH06 - 0.1 SP01 SP03 SP05 SP07 SP09	9/06/2022 0.5 9/06/2022 0.1 9/06/2022 0.5 9/06/2022 0.5 9/06/2022 0.1 9/06/2022 0.1 9/06/2022 0.1 9/06/2022 0.1 9/06/2022 0.1 9/06/2022 0.1 9/06/2022 0.1	Clayey SILT FILL - Clayey SAND FILL - Gravelly CLAY NAT- Slifty CLAY FILL - Sandy CLAY FILL - Clay	- - - - - -	- - - - <0.03	- - - - - <0.05	- - - - - <0.05 - -	- - <0.03	- - - - - - - -	- - - - - <5 - -	- - - - <0.03 - -	- - - - - <0.05 - -	- - - - <0.03 - -	- - - - - - - -	- - - - - - - -			- - - - <0.03 - -	- - - - - - <5	< 0.2			- - - - - <0.03	
EM2211061014 EM2211061016 EM2211061020 EM2211061022 EM2211061024 EM2211061026 EM2211061028 EM2211061019		BH04 - 0.1 BH05 - 0.1 BH05 - 0.5 BH06 - 0.1 SP01 SP03 SP05 SP07 SP09 BH07 - 0.1	9/06/2022 0.5 9/06/2022 0.1 9/06/2022 0.5 9/06/2022 0.5 9/06/2022 0.1 9/06/2022 0.1 9/06/2022 0.1 9/06/2022 0.1 9/06/2022 0.1 9/06/2022 0.1 9/06/2022 0.1 9/06/2022 0.1	Clayey SILT FILL - Clayey SAND FILL - Gravelly CLAY NAT- Slity CLAY FILL - Sandy CLAY FILL - Clay	- - - - - - - -	- - - - <0.03	- - - - <0.05 - - <0.5	- - - - - <0.05 - - - <0.5	- - <0.03	- - - - - - - - - - - - - - - - - - -	- - - - - <5 - - -	- - - - <0.03 - - - <0.5	- - - - - <0.05 - - -	- - - - <0.03 - - - <0.5	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - <5		- - - - - <0.03 - - - <0.5	- - - - - - <5 - -	- - - - <0.2 - - -			- - - - - <0.03 - -	
EM2211061014 EM2211061016 EM2211061020 EM2211061022 EM2211061024 EM2211061026 EM2211061019 EM2211061030		BH04 - 0.1 BH05 - 0.1 BH05 - 0.5 BH06 - 0.1 SP01 SP03 SP05 SP07 SP09 BH07 - 0.1 BH08 - 0.1	9/06/2022 0.5 9/06/2022 0.1 9/06/2022 0.5 9/06/2022 0.5 9/06/2022 0.1 9/06/2022 0.1 9/06/2022 0.1 9/06/2022 0.1 9/06/2022 0.1 9/06/2022 0.1 9/06/2022 0.1 9/06/2022 0.1 9/06/2022 0.1	Clayey SILT FILL - Clayey SAND FILL - Gravelly CLAY NAT- Silty CLAY FILL - Sandy CLAY FILL - Clayey SLIT	- - - - - - -	- - - - <0.03	<0.05	- - - - <0.05 - - - <0.5	- - <0.03	- - - - - - - -	- - - - - - - - - -		- - - - - <0.05 - - - -	- - - - <0.03 - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - <5			- - - - - <5 - - -			- - - - - - - - - - - - - - - - - - -	- - - - <0.03	- - - - - - - - - - - - - - - - - - -
EM2211061014 EM2211061016 EM2211061020 EM2211061022 EM2211061024 EM2211061026 EM2211061019 EM2211061030 EM2211061031		BH04 - 0.1 BH05 - 0.1 BH05 - 0.5 BH06 - 0.1 SP01 SP03 SP05 SP07 SP09 BH07 - 0.1 BH08 - 0.1 BH09 - 0.5	9/06/2022 0.5 9/06/2022 0.1 9/06/2022 0.1 9/06/2022 0.5 9/06/2022 0.1 9/06/2022 0.1	Clayey SILT FILL - Clayey SAND FILL - Gravelly CLAY NAT- Silty CLAY FILL - Sandy CLAY FILL - Clay FILL	- - - - - - - -	<0.03	- - - - <0.05 - - <0.5	- - - - - <0.05 - - - <0.5	- - <0.03	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -		<0.05	- - - - <0.03 - - - <0.5	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - <5		- - - - - - - - - - - - - - - - - - -	- - - - <0.2 - - -				
EM2211061014 EM2211061016 EM2211061020 EM2211061022 EM2211061024 EM2211061026 EM2211061019 EM2211061030 EM2211061031 EM2211061031	Stockpile	BH04 - 0.1 BH05 - 0.1 BH05 - 0.5 BH06 - 0.1 SP01 SP03 SP05 SP07 SP09 BH07 - 0.1 BH08 - 0.1 BH09 - 0.5 BH09 - 0.1	9/06/2022 0.5 9/06/2022 0.1 9/06/2022 0.1 9/06/2022 0.5 9/06/2022 0.1 9/06/2022 0.1	Clayey SILT FILL - Clayey SAND FILL - Gravelly CLAY NAT - Slity CLAY FILL - Sandy CLAY FILL - Clayey SLIT NAT - CLAY with slit FILL - Slity CLAY	- - - - - - - - - - - - - - - - - - -	<0.03	<0.05<0.5<0.5		- <0.03 <0.5 <0.5 - <0.5			<0.03		 <th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th>											
EM2211061014 EM2211061016 EM2211061020 EM2211061022 EM2211061024 EM2211061026 EM2211061028 EM2211061030 EM2211061031 EM2211061033 EM2211061033		BH04 - 0.1 BH05 - 0.1 BH05 - 0.5 BH06 - 0.1 SP01 SP03 SP05 SP07 SP09 BH07 - 0.1 BH08 - 0.1 BH09 - 0.5 BH09 - 0.1	9/06/2022 0.5 9/06/2022 0.1 9/06/2022 0.1 9/06/2022 0.5 9/06/2022 0.1 9/06/2022 0.5 9/06/2022 0.1	Clayey SILT FILL - Clayey SAND FILL - Gravelly CLAY NAT- Slity CLAY FILL - Sandy CLAY FILL - Slity CLAY FILL - Slity CLAY	- - - - - - - -	<0.03	<0.05	- - - - <0.05 - - - <0.5	- - <0.03	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -		<0.05	- - - - <0.03 - - - <0.5	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - <5		- - - - - - - - - - - - - - - - - - -	- - - - <0.2 - - -				
EM2211061014 EM2211061016 EM2211061020 EM2211061022 EM2211061024 EM2211061026 EM2211061019 EM2211061030 EM2211061031 EM2211061031	Stockpile	BH04 - 0.1 BH05 - 0.1 BH05 - 0.5 BH06 - 0.1 SP01 SP03 SP05 SP07 SP09 BH07 - 0.1 BH08 - 0.1 BH09 - 0.5 BH09 - 0.1	9/06/2022 0.5 9/06/2022 0.1 9/06/2022 0.1 9/06/2022 0.5 9/06/2022 0.1 9/06/2022 0.5 9/06/2022 0.1	Clayey SILT FILL - Clayey SAND FILL - Gravelly CLAY NAT - Slity CLAY FILL - Sandy CLAY FILL - Clayey SLIT NAT - CLAY with slit FILL - Slity CLAY	- - - - - - - - - - - - - - - - - - -	<0.03	<0.05 - <0.5 - <0.5 <1.2		- <0.03 <0.5 <0.5 - <0.5					<0.03<0.5<0.5					 - -		<!--</th--><th></th><th></th><th></th><th></th>				
EM2211061014 EM2211061016 EM2211061020 EM2211061022 EM2211061024 EM2211061028 EM2211061019 EM2211061030 EM2211061031 EM2211061033 EM2211061033 EM2211061036 EM2211061037	Stockpile	BH04 - 0.1 BH05 - 0.1 BH05 - 0.5 BH06 - 0.1 SP01 SP03 SP05 SP07 SP09 BH07 - 0.1 BH08 - 0.1 BH09 - 0.5 BH09 - 0.5 BH01 - 0.1	9/06/2022 0.5 9/06/2022 0.1 9/06/2022 0.1 9/06/2022 0.5 9/06/2022 0.1 9/06/2022 0.1	Clayey SILT FILL - Clayey SAND FILL - Gravelly CLAY NAT- Slity CLAY FILL - Sandy CLAY FILL - Slity CLAY FILL - Slity CLAY FILL - Slity CLAY NAT - CLAY with slit	- - - - - - - - - - - - - - - - - - -	<0.03			- <0.03 - - - <0.5 - <0.5 - -												<!--</th--><th></th><th></th><th></th><th></th>				
EM2211061014 EM2211061016 EM2211061020 EM2211061022 EM2211061026 EM2211061028 EM2211061030 EM2211061030 EM2211061031 EM2211061036 EM2211061037 EM2211061037	Stockpile	BH04 - 0.1 BH05 - 0.1 BH05 - 0.5 BH06 - 0.1 SP01 SP03 SP05 SP07 SP09 BH07 - 0.1 BH08 - 0.1 BH09 - 0.5 BH09 - 0.1 BH10 - 0.1	9/06/2022 0.5 9/06/2022 0.1 9/06/2022 0.1 9/06/2022 0.5 9/06/2022 0.1 9/06/2022 0.1 9/06/2022 0.1 9/06/2022 0.1 9/06/2022 0.1 9/06/2022 0.1 9/06/2022 0.1 9/06/2022 0.1 9/06/2022 0.1 9/06/2022 0.1 9/06/2022 0.5 9/06/2022 0.1 9/06/2022 0.1 9/06/2022 0.1 9/06/2022 0.1 9/06/2022 0.1	Clayey SILT FILL - Clayey SAND FILL - Gravelly CLAY NAT- Slity CLAY FILL - Sandy CLAY FILL - Slity CLAY FILL - Slity CLAY NAT - CLAY with slit FILL - Slity CLAY		<0.03			- <0.03 - - - <0.5 - <0.5 - -																
EM2211061014 EM2211061016 EM2211061020 EM2211061024 EM2211061024 EM2211061028 EM2211061019 EM2211061030 EM2211061031 EM2211061033 EM2211061036 EM2211061037 EM2211061037 EM2211061037 EM2211061039 EM2211061039	Stockpile	BH04 - 0.1 BH05 - 0.1 BH05 - 0.5 BH06 - 0.1 SP01 SP03 SP05 SP07 SP09 BH07 - 0.1 BH08 - 0.1 BH09 - 0.5 BH09 - 0.1 BH10 - 0.1 BH10 - 0.1 BH10 - 0.1	9/06/2022 0.5 9/06/2022 0.1 9/06/2022 0.1 9/06/2022 0.5 9/06/2022 0.1 9/06/2022 0.1 9/06/2022 0.1 9/06/2022 0.1 9/06/2022 0.1 9/06/2022 0.1 9/06/2022 0.1 9/06/2022 0.1 9/06/2022 0.1 9/06/2022 0.1 9/06/2022 0.1 9/06/2022 0.1 9/06/2022 0.1 9/06/2022 0.1 9/06/2022 0.1 9/06/2022 0.1 9/06/2022 0.1 9/06/2022 0.1 9/06/2022 0.1 9/06/2022 0.5 9/06/2022 0.5	Clayey SILT FILL - Clayey SAND FILL - Gravelly CLAY NAT- Slifty CLAY FILL - Sandy CLAY FILL - Slity CLAY FILL - Slity CLAY NAT - CLAY with slit FILL - Slity CLAY NAT - CLAY with slit FILL - Slity CLAY NAT - CLAY with slit FILL - Slity CLAY			<0.05 <0.5 <1.2 <0.5 <0.5 <0.5 <1.2 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5		- <0.03 - - - <0.5 - <0.5 - -																

EM2211061043

1 - NEPM 2013 Comm/Ind D and Res A/B HSL for Vapour Intrusion
2 - NEPM 2013 - Generic Ecological Investigation Levels: Comm/Ind and Urban Residential and Public Spaces
3 - NEPM 2013 Table 1B(6) ESLs for Comm/Ind and Urban Res

NL - Not limiting

Shading indicates analyte exceeds the relevant trigger value (highest criterion applied).

5/07/2022 Page 2 of 9

^{4 -} NEPM 2013 Table 1A(1) HILs Res A, B and Comm/Ind D Soil

LOR - Limit of Reporting

< Result is less than the laboratory limit of reporting (LOR)

^{*} No Relevant Criteria

⁻ Analysis not performed

s - Site Specific EIL

					Chemical Group							Chl	orinated H	Hydrocarbo	ons								Haloge	enated Ben	izenes	
					Analyte	Chlorinated hydrocarbons EPAVic	1,1,1,2- tetrachloroethane	1,1,1-trichloroethane	1,1,2,2- tetrachloroethane	1,1,2-trichloroethane	1,1-dichloroethene	1,2-dichloroethane	Carbon tetrachloride	Chloroform	cis-1,2-dichloroethene	Dichloromethane	Hexachlorobutadiene	Trichloroethene	Tetrachloroethene	trans-1,2- dichloroethene	Vinyi chloride	1,2,4-trichlorobenzene	1,2-dichlorobenzene	1,4-dichlorobenzene	Chlorobenzene	Hexachlorobenzene
					Unit	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
					LOR	0.01	0.01	0.01	0.02	0.04	0.01	0.02	0.01	0.02	0.01	0.4	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.03
		1161 - 1/	Res A/B, 0	Clay	>=0m, <1m	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
		HSLs Vapour Intrusion ¹	Res A/B. S	Sand	>=0m. <1m	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
		Intrusion	Res A/B,	Silt	>=0m, <1m	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
NEP	M 2013	EILs ²	Ur	rban Res &	Public Open Space	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
			Urban Res, Co		>=0m. <2m	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
		ESLs ³	Urban Res, Fi		>=0m, <2m	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
		HILs ⁴			Res A			*	*		*	*	*	*	*	*		*		*	*	*	*	*	*	10
		TIILS			NCS A																					10
Sample Code	Location	Field ID	Date	Depth (mbgl)	Matrix Type																					
EM2211061001		BH01 - 0.1		0.1	FILL - Sandy CLAY	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	< 0.05
EM2211061002]	BH01 - 0.5		0.5	NAT- Silty CLAY	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EM2211061004		BH02 - 0.1		0.1	FILL - Sandy CLAY	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EM2211061007	Horse Training	BH03 - 0.1			FILL - Sandy CLAY	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EM2211061008	Track	BH03 - 0.5		0.5	Clayey SILT	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EM2211061010	1	BH04 - 0.1			FILL - Clayey SAND	<u> </u>	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EM2211061013	1	BH05 - 0.1		0.1 0.5	FILL - Gravelly CLAY	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EM2211061014 EM2211061016	-	BH05 - 0.5 BH06 - 0.1		0.5	NAT- Silty CLAY FILL - Sandy CLAY	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EM2211061016		SP01		0.1	FILL - Clay	<0.01	<0.01	<0.01	<0.02	<0.04	<0.01	<0.02	<0.01	<0.02	<0.01	<0.4	<0.02	<0.02	< 0.02	<0.02	<0.02	<0.01	<0.02	<0.02	<0.02	<0.03
EM2211061022	†	SP03		0.1	FILL - Clay	-	-	-	-0.02	-	-	-	-0.01	-0.02		-	-0.02	-0.02	-0.02	-0.02	-0.02	-0.01	-0.02	-0.02	-0.02	
EM2211061024	Stockpile	SP05		0.1	FILL - Clay	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EM2211061026	1	SP07	9/06/2022	0.1	FILL - Clay	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EM2211061028	1	SP09	9/06/2022	0.1	FILL - Clay	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EM2211061019		BH07 - 0.1	9/06/2022	0.1	FILL - Reworked CLAY	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.05
EM2211061030		BH08 - 0.1	9/06/2022	0.1	FILL - Clayey SLIT	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EM2211061031		BH09 - 0.5		0.5	NAT - CLAY with silt	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EM2211061033	1	BH09 - 0.1			FILL - Silty CLAY	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.05
EM2211061036	Shed Area	BH10 - 0.1		0.1	FILL - Silty CLAY	<u> </u>	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.05
EM2211061037	1	BH10 - 0.5		0.5	NAT - CLAY with silt	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
EM2211061039 EM2211061040	1	BH11 - 0.1 BH11 - 0.5		0.1 0.5	FILL - Silty CLAY NAT - CLAY with silt	 	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.05
EM2211061040 EM2211061042	1	BH11 - 0.5 BH12 - 0.1		0.5	FILL - Gravel with silt	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EM2211061042 EM2211061043	†	BH12 - 0.1		0.5	NAT - CLAY with silt	 -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Notes	1		•	JC	TO SECTION OF THE PARTY OF THE	-		-					I			1		I	-		-		-	-		

- 1 NEPM 2013 Comm/Ind D and Res A/B HSL for Vapour Intrusion
 2 NEPM 2013 Generic Ecological Investigation Levels: Comm/Ind and Urban Residential and Public Spaces
 3 NEPM 2013 Table 18(6) ESLs for Comm/Ind and Urban Res
- 4 NEPM 2013 Table 1A(1) HILs Res A, B and Comm/Ind D Soil LOR Limit of Reporting

NL - Not limiting

Shading indicates analyte exceeds the relevant trigger value (highest criterion applied).

- < Result is less than the laboratory limit of reporting (LOR)
- * No Relevant Criteria
- Analysis not performed
- s Site Specific EIL

5/07/2022 Page 3 of 9

			Chemical Group							Н	erbicides								PCBs			Pesti	cides		
			Analyte	2,4,5-Trichlorophenoxy Acetic Acid	2,4,5-TP (SIIVex)	Hedonal	2,4-Dichlorprop	4-(2,4- Dichlorophenoxy)butyri c Acid (2,4-DB)	4-Chlorophenoxy acetic acid	Atrazine	Clopyralid	Dicamba	Dinoseb	Fluroxypyr	2-Methyl-4- chlorophenoxyacetic acid	2-Methyl-4- Chlorophenoxy Butanolc Acid	Месоргор	Triclopyr	PCBs (Sum of total)	Bifenthrin	Demeton-S-methyl	Fenamiphos	Mirex	Parathlon	Pirimphos-ethyl
			Unit	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
			LOR	0.02	0.02	0.02	0.02	0.02	0.02	0.05	0.02	0.02	5	0.02	0.02	0.02	0.02	0.02	0.1	0.05	0.05	0.05	0.05	0.2	0.05
	HSLs Vapour	Res A/B, Clay	>=0m, <1m	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
	Intrusion ¹	Res A/B, Sand	>=0m, <1m	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
	ma dolon	Res A/B, Silt	>=0m, <1m	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
NEPM 2013	EILs ²	Urban Res &	Public Open Space	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
	ESLs ³	Urban Res, Coarse Soil	>=0m, <2m	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
	ESLS	Urban Res, Fine Soil	>=0m, <2m	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
	HILs⁴		Res A	600	*	900	*	*	*	320	*	*	*	*	600	600	600	*	1	600	*	*	10	*	*

Sample Code	Location	Field ID	Date	Depth (mbal)	Matrix Type																						
EM2211061001		BH01 - 0.1	9/06/2022	(ITIDGI)	FILL - Sandy CLAY	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.05	<0.02	<0.02		<0.02	<0.02	<0.02	<0.02	<0.02	<0.1	<0.05	<0.05	<0.05	<0.05	<0.2	<0.05
EM2211061001	1	BH01 - 0.5	9/06/2022	0.5	NAT- Silty CLAY	-0.02	-0.02	-0.02	-0.02	-0.02	-0.02	-0.00	-0.02	-0.02		-0.02	-0.02	-0.02	-0.02	-0.02		-0.00		-0.00	-0.00	-0.2	- 10.00
EM2211061004	1	BH02 - 0.1	9/06/2022	0.0	FILL - Sandy CLAY	_			 						-												
EM2211061007	1	BH03 - 0.1	9/06/2022	0.1	FILL - Sandy CLAY	-	_	-	 -	_	-	<u> </u>	-	-	-	-	_	_	-	_	-	-	-	_	-	<u> </u>	
EM2211061008	Horse Training	BH03 - 0.5	9/06/2022	0.5	Clayey SILT	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<u> </u>	- 1
EM2211061010	Track	BH04 - 0.1	9/06/2022	0.1	FILL - Clayey SAND	_	-	-	<u> </u>	-	<u> </u>	<u> </u>	-	-	-	-	-	-	<u> </u>	-	-	-	-	-	-		
EM2211061013	1	BH05 - 0.1	9/06/2022	01	FILL - Gravelly CLAY			<u> </u>	 	_	<u> </u>	 	-	<u> </u>	<u> </u>	-	_	_	-	_	<u> </u>	-	-		-	-	
EM2211061014	1	BH05 - 0.5	9/06/2022	0.5	NAT- Silty CLAY	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<u> </u>	
EM2211061016	1	BH06 - 0.1	9/06/2022	0.1	FILL - Sandy CLAY	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	t - 1
EM2211061020		SP01	9/06/2022	0.1	FILL - Clay	-	-	-	-	-	-	-	-	-	<5	-	-	-	-	-	<0.1	-	-	-	-	-	t - 1
EM2211061022	1	SP03	9/06/2022	0.1	FILL - Clay	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EM2211061024	Stockpile	SP05	9/06/2022	0.1	FILL - Clay	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EM2211061026	1	SP07	9/06/2022	0.1	FILL - Clay	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EM2211061028	1	SP09	9/06/2022	0.1	FILL - Clay	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EM2211061019		BH07 - 0.1	9/06/2022	0.1	FILL - Reworked CLAY	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	<0.05	< 0.02	< 0.02	-	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.1	< 0.05	< 0.05	<0.05	<0.05	< 0.2	< 0.05
EM2211061030	1	BH08 - 0.1	9/06/2022	0.1	FILL - Clayey SLIT	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EM2211061031	1	BH09 - 0.5	9/06/2022	0.5	NAT - CLAY with silt	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EM2211061033	1	BH09 - 0.1	9/06/2022	0.1	FILL - Silty CLAY	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.05	< 0.02	< 0.02	-	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.1	< 0.05	< 0.05	< 0.05	<0.05	<0.2	< 0.05
EM2211061036	Shed Area	BH10 - 0.1	9/06/2022	0.1	FILL - Silty CLAY	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.05	<0.05	-	< 0.2	< 0.05
EM2211061037] Siled Aled	BH10 - 0.5	9/06/2022	0.5	NAT - CLAY with silt	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EM2211061039		BH11 - 0.1	9/06/2022	0.1	FILL - Silty CLAY	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	<0.05	< 0.04	< 0.04	-	< 0.04	< 0.04	< 0.04	<0.04	< 0.04	<0.1	<0.05	<0.05	<0.05	<0.05	<0.2	<0.05
EM2211061040		BH11 - 0.5	9/06/2022	0.5	NAT - CLAY with silt	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EM2211061042	_	BH12 - 0.1	9/06/2022	0.1	FILL - Gravel with silt	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EM2211061043		BH12 - 0.5	9/06/2022	0.5	NAT - CLAY with silt	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

- 1 NEPM 2013 Comm/Ind D and Res A/B HSL for Vapour Intrusion
 2 NEPM 2013 Generic Ecological Investigation Levels: Comm/Ind and Urban Residential and Public Spaces
 3 NEPM 2013 Table 1B(6) ESLs for Comm/Ind and Urban Res
- 4 NEPM 2013 Table 1A(1) HILs Res A, B and Comm/Ind D Soil LOR Limit of Reporting
- NL Not limiting
- Shading indicates analyte exceeds the relevant trigger value (highest criterion applied).
- < Result is less than the laboratory limit of reporting (LOR)
- * No Relevant Criteria
- Analysis not performed
- s Site Specific EIL

5/07/2022 Page 4 of 9

					Chemical Group							Organopho	osphorous	Pesticides	;								TPH		
					Analyte	Azinophos methyl	Bromophos-ethyl	Carbophenothion	Chlorfenvinphos	Chlorpyrifos	Chlorpyrifos-methyl	Diazinon	Dichlorvos	Dimethoate	Ethion	Fenthion	Malathion	Methyl parathion	Monocrotophos	Prothiofos	C6-C9 Fraction	C10-C14 Fraction	C15-C28 Fraction	C29-C36 Fraction	C10-C36 Fraction (Sum)
					Unit	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
					LOR	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.2	0.2	0.05	10	50	100	100	50
			Res A/E	Clav	>=0m, <1m	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
		HSLs Vapour	Res A/B	· ,	>=0m, <1m	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
		Intrusion ¹	Res A/I	-	>=0m, <1m	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
NEE	M 2013	EILs ²			Public Open Space	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
1421	2010	EILS	Urban Res, C		>=0m, <2m	*		*		*	*	*	*	*	*		*	*	*	*	*	*	*	*	*
		ESLs ³				*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*		*
		4	Urban Res,	FINE SOII	>=0m, <2m	*			*	400	*		*	*	*	*	*	*	*	*		*	*	*	*
		HILs⁴			Res A					160															
Sample Code	Location	Field ID	Date	Depth (mbgl)	Matrix Type																				
EM2211061001		BH01 - 0.1	9/06/2022	0.1	FILL - Sandy CLAY	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.2	< 0.2	< 0.05	<10	<50	<100	<100	<50
EM2211061002]	BH01 - 0.5	9/06/2022	0.5	NAT- Silty CLAY	-	-	-	-	-	-	1	-	-	-	-	-	-	-	-	-	-	-	- '	-
EM2211061004		BH02 - 0.1	9/06/2022	0.1	FILL - Sandy CLAY	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<10	<50	<100	<100	<50
EM2211061007	Horse Training	BH03 - 0.1	9/06/2022	0.1	FILL - Sandy CLAY	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<10	<50	<100	<100	<50
EM2211061008	Track	BH03 - 0.5	9/06/2022	0.5	Clayey SILT	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EM2211061010	1	BH04 - 0.1	9/06/2022	0.1	FILL - Clayey SAND	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<10	<50	<100	<100	<50
EM2211061013	1	BH05 - 0.1	9/06/2022	0.1	FILL - Gravelly CLAY	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<10	<50	<100	<100	<50
EM2211061014	1	BH05 - 0.5	9/06/2022	0.5	NAT- Silty CLAY	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EM2211061016		BH06 - 0.1	9/06/2022	0.1 0.1	FILL - Sandy CLAY	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<10	<50	<100	<100	<50
EM2211061020 EM2211061022	-	SP01 SP03	9/06/2022 9/06/2022	0.1	FILL - Clay FILL - Clay	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<10	<50	<100	<100	<50
EM2211061022	Stockpile	SP05	9/06/2022	0.1	FILL - Clay	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<10	<50	<100	<100	<50
EM2211061024	- Otockpile	SP07	9/06/2022	0.1	FILL - Clay	-		-	-	-	-	-	-	-	-	-	-	-		-	<10	<50	<100	<100	<50
EM2211061028	†	SP09	9/06/2022	0.1	FILL - Clay		_	-	-	-	-	_	_	_	_	-	-				<10	<50	<100	<100	<50
EM2211061019		BH07 - 0.1	9/06/2022	0.1	FILL - Reworked CLAY	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	<0.05	< 0.05	< 0.05	<0.05	<0.05	<0.2	<0.2	< 0.05	<10	<50	<100	<100	<50
EM2211061030	†	BH08 - 0.1	9/06/2022	0.1	FILL - Clayey SLIT	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<10	<50	<100	<100	<50
EM2211061031	1	BH09 - 0.5	9/06/2022	0.5	NAT - CLAY with silt	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<10	<50	<100	<100	<50
EM2211061033	1	BH09 - 0.1	9/06/2022	0.1	FILL - Silty CLAY	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.2	<0.2	< 0.05	<10	130	2,000	1,160	3,290
EM2211061036	Shed Area	BH10 - 0.1	9/06/2022	0.1	FILL - Silty CLAY	< 0.05	< 0.05	<0.05	<0.05	< 0.05	<0.05	< 0.05	<0.05	< 0.05	<0.05	< 0.05	<0.05	< 0.2	<0.2	<0.05	<10	<50	2,050	1,570	3,620
EM2211061037] Siled Aled	BH10 - 0.5	9/06/2022	0.5	NAT - CLAY with silt	-	-	-	-	-	-	1	-	-	-	-	-	-	-	-	<10	<50	<100	<100	<50
EM2211061039	1	BH11 - 0.1	9/06/2022	0.1	FILL - Silty CLAY	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.2	<0.2	<0.05	<10	<50	<100	110	110
EM2211061040	1	BH11 - 0.5	9/06/2022	0.5	NAT - CLAY with silt	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<10	<50	<100	<100	<50
EM2211061042	1	BH12 - 0.1	9/06/2022	0.1	FILL - Gravel with silt	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<10	<50	<100	<100	<50
EM2211061043		BH12 - 0.5	9/06/2022	0.5	NAT - CLAY with silt	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<10	<50	<100	<100	<50

- 1 NEPM 2013 Comm/Ind D and Res A/B HSL for Vapour Intrusion
 2 NEPM 2013 Generic Ecological Investigation Levels: Comm/Ind and Urban Residential and Public Spaces
 3 NEPM 2013 Table 1B(6) ESLs for Comm/Ind and Urban Res
- 4 NEPM 2013 Table 1A(1) HILs Res A, B and Comm/Ind D Soil LOR Limit of Reporting

NL - Not limiting

Shading indicates analyte exceeds the relevant trigger value (highest criterion applied).

< Result is less than the laboratory limit of reporting (LOR)

* No Relevant Criteria

- Analysis not performed

s - Site Specific EIL

Page 5 of 9 5/07/2022

					Chemical Group								In	organics								MAI	Н
					Analyte	Exchangeable Calcium Percent	Exchangeable Magneslum Percent	Exchangeable Potassium Percent	Exchangeable Sodium Percent	Magnesium/Potassium Ratio	Moisture Content	Exchangeable Calclum	Exchangeable Magneslum	Exchangeable Potassium	Exchangeable Sodium	Cation Exchange Capacity	Cyanide Total	Electrical Conductivity (Lab)	Calcium/Magnesium Ratio	Fluoride	pH (Lab)	Monocylic aromatic hydrocarbons EPAVic	Styrene
					Unit	%	%	%	%	-	%	meq/100g	meq/100g	meq/100g	meq/100g	meq/100g	mg/kg	μS/cm	-	mg/kg	Ŀ	mg/kg	mg/kg
					LOR	0.2	0.2	0.2	0.2	0.2	1	0.2	0.2	0.2	0.2	0.2	1	1	0.2	40	0.1	0.2	0.5
		HSLs Vapour	Res A/B, 0	Clay	>=0m, <1m	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
		Intrusion ¹	Res A/B, S	Sand	>=0m, <1m	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
		ina asion	Res A/B,	Silt	>=0m, <1m	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
NEF	M 2013	EILs ²	Ur	rban Res &	Public Open Space	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
		FOL .3	Urban Res, Co	arse Soil	>=0m, <2m	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
		ESLs ³	Urban Res, Fi	ine Soil	>=0m, <2m	*	*	*	*	*	*	*	*			*	*	*	*	*	*	*	*
		HILs ⁴			Res A	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Sample Code	Location	Field ID	Date	Depth (mbgl)	Matrix Type																		
EM2211061001		BH01 - 0.1	9/06/2022	0.1	FILL - Sandy CLAY	-	-	-	-	-	6.8	-	-	-	-	-	-	-	-	-	-	-	-
EM2211061002		BH01 - 0.5		0.5	NAT- Silty CLAY	-	-	-	-	-	24	-	-	-	-	-	-	-	-	-	<u> </u>	-	-
EM2211061004	_	BH02 - 0.1		0.1	FILL - Sandy CLAY	-	-	-	-	-	5.1	-	-	-	-	-	-	-	-	-	 -	-	-
EM2211061007 EM2211061008	Horse Training	BH03 - 0.1 BH03 - 0.5		0.1	FILL - Sandy CLAY	-	-	-	-	-	6.2 5.5	-	-	-	-	-	-	-	-	-	 - 	-	-
EM2211061008 EM2211061010	Track	BH03 - 0.5 BH04 - 0.1		0.5	Clayey SILT FILL - Clayey SAND	-	-	-	-	-	14	-	-	-	-	-	-	-	-	-	 -	-	-
EM2211061010	_	BH05 - 0.1		0.1	FILL - Clayey SAND		-	-	-	-	19	-	-	-	-	-	-	 	-	-	 	-	-
EM2211061013		BH05 - 0.5		0.5	NAT- Silty CLAY	-	-	-	-	-	18	-	-	-	-	-	-	-	-	-	+	-	 -
EM2211061014	-	BH06 - 0.1		0.3	FILL - Sandy CLAY		-		-	-	7.8	-	-	-	-	-		-	-		 		
EM2211061020		SP01		0.1	FILL - Clay	-	-	-	-	-	7.4	-	-	-	-	-	<1	-	-	180	-	<0.2	<0.5
EM2211061022		SP03		0.1	FILL - Clay	-	-	-	-	-	7.3	-	-	-	-	-	-	-	-	-	- 1	-	-
EM2211061024	Stockpile	SP05	9/06/2022	0.1	FILL - Clay	-	-	-	-	-	16	-	-	-	-	-	-	-	-	-	-	-	-
EM2211061026		SP07	9/06/2022	0.1	FILL - Clay	-	-	-	-	-	5.7	-	-	-	-	-	-	-	-	-	-	-	-
EM2211061028		SP09		0.1	FILL - Clay	-	-	-	-	-	5.5	-	-	-	-	-	-	-	-	-	-	-	-
EM2211061019		BH07 - 0.1		0.1	FILL - Reworked CLAY	38	35.7	8.1	18.2	4.4	11	4.7	4.4	1	2.2	12.4	-	615	1.1	-	9	-	-
EM2211061030		BH08 - 0.1		0.1	FILL - Clayey SLIT	-	-	-	-	-	8.2	-	-	-	-	-	-	-	-	-	<u>-</u> -	-	-
EM2211061031		BH09 - 0.5		0.5	NAT - CLAY with silt	13.2	45.6	7.3	33.9	6.3	14	3.9	13.4	2.1	10	29.5	-	1,560	0.3	-	9	-	-
EM2211061033	4	BH09 - 0.1		0.1	FILL - Silty CLAY	-	-	-	-	-	2.6	-	-	-	-	-	-	-	-	-	┼┼	-	-
EM2211061036 EM2211061037	Shed Area	BH10 - 0.1 BH10 - 0.5		0.1	FILL - Silty CLAY NAT - CLAY with silt	-	-	-	-	-	3.2	-	-	-	-	-	-	-	-	-	 -	-	
EM2211061037 EM2211061039	1	BH10 - 0.5 BH11 - 0.1		0.5	FILL - Silty CLAY	-	-	-	-	-	4.8	-	-	-	-	-	-	-	-	-	 	-	-
EM2211061039	1	BH11 - 0.5		0.1	NAT - CLAY with silt		-	-	-	-	22	-	-	-	-	-	-	 	-	-	 	-	-
EM2211061040	†	BH12 - 0.1		0.5	FILL - Gravel with silt		-		-	-	1.8	-	-	-	-	-	-	1 -	-	-	 - 		-
EM2211061043	1	BH12 - 0.5		0.5	NAT - CLAY with silt	-	-	-	-	-	17	-	-	-	-	-	-	-	-	-	<u>- </u>	-	-

- 1 NEPM 2013 Comm/Ind D and Res A/B HSL for Vapour Intrusion
 2 NEPM 2013 Generic Ecological Investigation Levels: Comm/Ind and Urban Residential and Public Spaces
 3 NEPM 2013 Table 1B(6) ESLs for Comm/Ind and Urban Res
- 4 NEPM 2013 Table 1A(1) HILs Res A, B and Comm/Ind D Soil LOR Limit of Reporting

NL - Not limiting

Shading indicates analyte exceeds the relevant trigger value (highest criterion applied).

< Result is less than the laboratory limit of reporting (LOR)

* No Relevant Criteria

- Analysis not performed

s - Site Specific EIL

Page 6 of 9 5/07/2022

					Chemical Group										M	letals										Organic
					Analyte Unit LOR	mg/kg 5	Enjures mg/kg	mg/kg	mg/kg	Cadmin Mg/kg	Chromium (hexavalent)	mg/kg	mg/kg	mg/kg	lron *	peed mg/kg	mg/kg	Mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	E mg/kg 5	maykg mg/kg	SulZ mg/kg	. * Total Organic Carbon
			D 4/D	01		3	*	*	*	*	*	*	*	*	*	*	3	*	2	*	*	*	*	*	*	*
		HSLs Vapour	Res A/B,		>=0m, <1m	*		*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
		Intrusion ¹	Res A/B, S		>=0m, <1m	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
NED	M 2013	2	Res A/B,		>=0m, <1m	100		*		*	*	480 ^s		210 ^s		*	-	*		200 ^s	*	*		*	520 ^s	*
NEP	WI 2013	ElLs²			Public Open Space	*	*	*	*	*	*	400	*	*	*	*	-	*		*	*		*	*	320	*
		ESLs ³	Urban Res, Co		>=0m, <2m	*	*	*	*	•	*	•	•	*	•	•	•	*	•	*	*	*	*	*	*	*
		4	Urban Res, Fi		>=0m, <2m		*			20			400			200	2.000									*
		HILs⁴			Res A	100	•	60	4,500	20	100	•	100	6,000	*	300	3,800	40	•	400	200	•	•	*	7,400	•
Sample Code	Location	Field ID	Date	Depth (mbgl)	Matrix Type																					
EM2211061001	1	BH01 - 0.1		0.1	FILL - Sandy CLAY	<5	60	1	<50	<1	< 0.5	23	18	25	-	5	450	<0.1	-	52	<5	-	-	34	44	-
EM2211061002	1	BH01 - 0.5	9/06/2022	0.5	NAT- Silty CLAY	9	110	2	<50	<1	-	40	14	14	-	13	177	<0.1	-	38	<5	-	-	54	22	-
EM2211061004 EM2211061007	+	BH02 - 0.1 BH03 - 0.1		0.1	FILL - Sandy CLAY FILL - Sandy CLAY	<5 <5	-	-	-	<1	-	13	-	15 14	-	<5 <=	 -	<0.1	-	37 39	-	-	-	-	34 27	-
EM2211061007	Horse Training	BH03 - 0.5	9/06/2022	0.5	Clayey SILT	<5	10	<1	<50	<1	-	8	<	<5	-	<5	26	<0.1	-	2	<5	-	-	20	<5	
EM2211061010	Track	BH04 - 0.1	9/06/2022	0.1	FILL - Clayey SAND	<5	-	-	-	<1	-	16	-	9	-	6	-	<0.1	-	18	-	-	-	-	16	-
EM2211061013	†	BH05 - 0.1		0.1	FILL - Gravelly CLAY	<5	-	-	-	<1	-	19	-	10	-	6	-	<0.1	-	26	-	-	-	-	18	-
EM2211061014	1	BH05 - 0.5	9/06/2022	0.5	NAT- Silty CLAY	6	40	<1	<50	<1	-	42	15	8	-	8	89	<0.1	-	29	<5	-	-	64	9	-
EM2211061016		BH06 - 0.1		0.1	FILL - Sandy CLAY	<5	-	-	-	<1	-	14	-	20	-	15	-	<0.1	-	34	-	-	-	-	52	-
EM2211061020	1	SP01	9/06/2022		FILL - Clay	8	-	-	-	<1	< 0.5	-	-	14	-	13	-	<0.1	<2	33	<5	<2	<5	-	36	-
EM2211061022	Can also il a	SP03	9/06/2022		FILL - Clay	6	80	<1	<50	<1	-	31	12	12	-	13	256	<0.1	-	27	<5	-	-	34	36	-
EM2211061024 EM2211061026	Stockpile	SP05 SP07	9/06/2022	0.1	FILL - Clay FILL - Clay	7 5	-	-	-	<1	-	52 28	-	20	-	14 13	-	<0.1	-	51 24	-	-	-	-	33 31	-
EM2211061026 EM2211061028	+	SP09	9/06/2022	0.1	FILL - Clay	6	-	-	-	<1	-	31	-	13	-	12	 -	<0.1	-	28	-	-	-	-	36	
EM2211061019		BH07 - 0.1	9/06/2022	0.1	FILL - Reworked CLAY	<5	110	<1	<50	<1	<0.5	17	19	19	2.6	8	691	<0.1	-	79	<5	-	-	16	52	0.6
EM2211061030	†	BH08 - 0.1	9/06/2022	0.1	FILL - Clayey SLIT	<5	-	-	-	<1	-	16	-	9	-	40	-	<0.1	-	14	-	-	-	-	56	-
EM2211061031	1	BH09 - 0.5	9/06/2022	0.5	NAT - CLAY with silt	8	-	-	-	<1	-	31	-	16	3.9	12	-	<0.1	-	45	-	-	-	-	24	0.5
EM2211061033]	BH09 - 0.1		0.1	FILL - Silty CLAY	<5	30	<1	<50	<1	<0.5	10	3	9	-	32	91	<0.1	-	6	<5	-	-	24	175	-
EM2211061036	Shed Area	BH10 - 0.1		0.1	FILL - Silty CLAY	6	-	-	-	<1	-	11	-	12	-	52	-	<0.1	-	7	-	-	-	-	107	-
EM2211061037	4	BH10 - 0.5		0.5	NAT - CLAY with silt	<5	-	-	-	<1	-	18	-	8	-	7	-	<0.1	-	22	-	-	-	-	17	-
EM2211061039	1	BH11 - 0.1	9/06/2022		FILL - Silty CLAY	<5 <5	70	<1	<50	<1	<0.5	12	4	7	-	141	109	0.1	-	8	<5	-	-	21	321	-
EM2211061040 EM2211061042	+	BH11 - 0.5 BH12 - 0.1	9/06/2022	0.5	NAT - CLAY with silt FILL - Gravel with silt	<5 <5	-	-	-	<1	-	20 14	-	15	-	6 16	-	<0.1	-	15 66	-	-	-	-	22 80	-
EM2211061042 EM2211061043	1	BH12 - 0.1		0.1	NAT - CLAY with silt	5	-	-	 	<1	-	25	-	10	1	10	 	<0.1	-	23	-	-	-	-	24	
Notes		DI 112 - 0.3	3/00/2022	p.5	INTI - CLAT WILLIAM		_	-		` '				10		10		10.1								

EM2211061043

- 1 NEPM 2013 Comm/Ind D and Res A/B HSL for Vapour Intrusion
 2 NEPM 2013 Generic Ecological Investigation Levels: Comm/Ind and Urban Residential and Public Spaces
 3 NEPM 2013 Table 1B(6) ESLs for Comm/Ind and Urban Res

- 4 NEPM 2013 Table 1A(1) HILs Res A, B and Comm/Ind D Soil

LOR - Limit of Reporting

NL - Not limiting

Shading indicates analyte exceeds the relevant trigger value (highest criterion applied).

< Result is less than the laboratory limit of reporting (LOR)

* No Relevant Criteria

- Analysis not performed

s - Site Specific EIL

5/07/2022 Page 7 of 9

			Chemical Group												Org	ganochlori	ne Pesticid	les											
			Analyte	Organochlorine pesticides EPAVic	4,4-DDE	a-BHC	Aldrin	Aldrin + Dieldrin	р-внс	Chlordane	Chlordane (cis)	Chlordane (trans)	д-внс	aga	DDT	DDT+DDE+DDD	Dieldrin	Endosulfan	Endosulfan I	Endosulfan II	Endosulfan sulphate	Endrin	Endrin aldehyde	Endrin ketone	g-BHC (Lindane)	Heptachlor	Heptachlor epoxide	Methoxychlor	Toxaphene
			Unit	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
			LOR	0.03	0.05	0.03	0.03	0.05	0.03	0.03	0.03	0.03	0.03	0.05	0.05	0.05	0.03	0.05	0.03	0.03	0.03	0.03	0.03	0.05	0.03	0.03	0.03	0.03	2
	HSLs Vapour	Res A/B, Clay	>=0m, <1m	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
	Intrusion ¹	Res A/B, Sand	>=0m, <1m	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
		Res A/B, Silt	>=0m, <1m	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
NEPM 2013	EILs ²	Urban Res &	Public Open Space	*	*	*	*	*	*	*	*	*	*	*	180	*	*	*	*	*	*	*	*	*	*	*	*	*	*
	ESLs ³	Urban Res, Coarse Soil	>=0m, <2m	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
	ESLS	Urban Res, Fine Soil	>=0m, <2m	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
	HILs⁴		Res A	*	*	*	*	_	*	50	*	*	*	*	*	240	*	270	*	*	*	10	*	*	*		*	300	20

Sample Code	Location	Field ID	Date	Depth (mbgl)	Matrix Type																										
EM2211061001		BH01 - 0.1	9/06/2022	0.1	FILL - Sandy CLAY	-	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	< 0.05	< 0.05	< 0.05	< 0.05	< 0.2	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.2	<2
EM2211061002	7	BH01 - 0.5	9/06/2022	0.5	NAT- Silty CLAY	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EM2211061004	7	BH02 - 0.1	9/06/2022	0.1	FILL - Sandy CLAY	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EM2211061007	I leves Training	BH03 - 0.1	9/06/2022	0.1	FILL - Sandy CLAY	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EM2211061008	Horse Training Track	BH03 - 0.5	9/06/2022	0.5	Clayey SILT	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- '	-	-
EM2211061010		BH04 - 0.1	9/06/2022	0.1	FILL - Clayey SAND	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- '	-	-
EM2211061013	7	BH05 - 0.1	9/06/2022	0.1	FILL - Gravelly CLAY	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EM2211061014		BH05 - 0.5	9/06/2022	0.5	NAT- Silty CLAY	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EM2211061016		BH06 - 0.1	9/06/2022	0.1	FILL - Sandy CLAY	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EM2211061020		SP01	9/06/2022	0.1	FILL - Clay	< 0.03	< 0.05	< 0.03	< 0.03	-	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.05	< 0.05	-	< 0.03	-	<0.03	< 0.03	< 0.03	< 0.03	< 0.03	-	< 0.03	< 0.03	< 0.03	< 0.03	-
EM2211061022		SP03	9/06/2022	0.1	FILL - Clay	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EM2211061024	Stockpile	SP05	9/06/2022	0.1	FILL - Clay	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EM2211061026		SP07	9/06/2022	0.1	FILL - Clay	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EM2211061028		SP09	9/06/2022		FILL - Clay	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EM2211061019		BH07 - 0.1	9/06/2022	0.1	FILL - Reworked CLAY	-	< 0.05	< 0.05	< 0.05	<0.05	<0.05	-	< 0.05	< 0.05	< 0.05	< 0.05	< 0.2	< 0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	< 0.2	<2
EM2211061030		BH08 - 0.1	9/06/2022	0.1	FILL - Clayey SLIT	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EM2211061031		BH09 - 0.5	9/06/2022	0.5	NAT - CLAY with silt	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EM2211061033		BH09 - 0.1	9/06/2022	0.1	FILL - Silty CLAY	-	< 0.05	<0.05	<0.05	<0.05	<0.05	-	<0.05	< 0.05	< 0.05	< 0.05	< 0.2	< 0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.2	<2
EM2211061036	Shed Area	BH10 - 0.1	9/06/2022	0.1	FILL - Silty CLAY	-	< 0.05	< 0.05	< 0.05	0.56	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.2	< 0.05	0.56	<0.05	< 0.05	<0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	<0.05	<0.2	-
EM2211061037		BH10 - 0.5	9/06/2022	0.5	NAT - CLAY with silt	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-
EM2211061039	_	BH11 - 0.1	9/06/2022		FILL - Silty CLAY	-	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	<0.05	< 0.05	<0.05	< 0.05	< 0.2	< 0.05	< 0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2	<2
EM2211061040		BH11 - 0.5	9/06/2022		NAT - CLAY with silt	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- '		-
EM2211061042		BH12 - 0.1	9/06/2022		FILL - Gravel with silt	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-
EM2211061043		BH12 - 0.5	9/06/2022	0.5	NAT - CLAY with silt	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Notes

- 1 NEPM 2013 Comm/Ind D and Res A/B HSL for Vapour Intrusion
- 2 NEPM 2013 Generic Ecological Investigation Levels: Comm/Ind and Urban Residential and Public Spaces 3 NEPM 2013 Table 1B(6) ESLs for Comm/Ind and Urban Res
- 4 NEPM 2013 Table 1A(1) HILs Res A, B and Comm/Ind D Soil

LOR - Limit of Reporting NL - Not limiting

- Shading indicates analyte exceeds the relevant trigger value (highest criterion applied).
- < Result is less than the laboratory limit of reporting (LOR)
- * No Relevant Criteria
- Analysis not performed
- s Site Specific EIL

5/07/2022 Page 8 of 9

				Chemical Group											Р	AH										
				Analyte	Benzo(b+j+k)fluoranthe ne	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a) pyrene	Benzo(b+l)fluoranthene	Benzo(g,h,l)perylene	Benzo(k)fluoranthene	Chrysene	Dibenz(a,h)anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-c,d)pyrene	Naphthalene	Phenanthrene	Pyrene	Benzo(a)pyrene TEQ calc (Half)	Benzo(a)pyrene TEQ (LOR)	Benzo(a)pyrene TEQ calc (Zero)	PAHs (Sum of total)	PAHS (Vic EPA List)
				Unit	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
				LOR	1	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
			Res A/B, Clay	>=0m, <1m	*	*	*	*	*	*	*	*	*	*	*	*	*	*	5	*	*	*	*	*	*	*
		HSLs Vapour	Res A/B, Sand	>=0m. <1m	*	*	*	*	*	*	*	*	*	*	*	*	*	*	3	*	*	*	*	*	*	*
		Intrusion ¹	Res A/B, Silt	>=0m, <1m	*	*	*	*	*	*	*	*	*	*	*	*	*	*	4	*	*	*	*	*	*	*
NEP	M 2013	EILs ²		Public Open Space	*	*	*	*	*	*	*	*	*	*	*	*	*	*	170	*	*	*	*	*	*	*
			Urban Res, Coarse Soil	>=0m, <2m	*	*	*	*	*	0.7	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
		ESLs ³	Urban Res, Fine Soil	>=0m, <2m	*	*	*	*	*	0.7	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
		HILs ⁴	0.54111(05,111100011	Res A		*				*	*					*		*		*		3	3	3	300	300
		TIILS		Nes A																		1 - 5 -	<u> </u>		300	300
Sample Code	Location	Field ID	Depth (mbgl)	Matrix Type																						
EM2211061001		BH01 - 0.1	9/06/2022 0.1	FILL - Sandy CLAY	-	< 0.5	< 0.5	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 0.5	< 0.5	<0.5	< 0.5	<0.5	< 0.5	< 0.5	0.6	1.2	< 0.5	< 0.5	-
EM2211061002		BH01 - 0.5	9/06/2022 0.5	NAT- Silty CLAY	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EM2211061004		BH02 - 0.1	9/06/2022 0.1	FILL - Sandy CLAY	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	1.2	<0.5	<0.5	-
EM2211061007	Horse Training	BH03 - 0.1	9/06/2022 0.1	FILL - Sandy CLAY	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	1.2	<0.5	<0.5	-
EM2211061008	Track	BH03 - 0.5	9/06/2022 0.5	Clayey SILT	-			-	-		-	-			- 0.5		-					-	-			-
EM2211061010		BH04 - 0.1	9/06/2022 0.1 9/06/2022 0.1	FILL - Clayey SAND	-	<0.5	<0.5	<0.5 <0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	0.6	1.2	<0.5	<0.5	-
EM2211061013 EM2211061014	-	BH05 - 0.1 BH05 - 0.5	9/06/2022 0.1 9/06/2022 0.5	FILL - Gravelly CLAY NAT- Silty CLAY	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	1.2	<0.5	<0.5	-
EM2211061014 EM2211061016		BH05 - 0.5 BH06 - 0.1	9/06/2022 0.5	FILL - Sandy CLAY	-	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	1.2	<0.5	<0.5	-
EM2211061010		SP01	9/06/2022 0.1	FILL - Clay	<1.0	<0.5	<0.5	<0.5	<0.5	< 0.5	-	<0.5	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	1.2	<0.5	-	< 0.5
EM2211061022		SP03	9/06/2022 0.1	FILL - Clay	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EM2211061024	Stockpile	SP05	9/06/2022 0.1	FILL - Clay	-	< 0.5	< 0.5	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.6	1.2	< 0.5	< 0.5	-
EM2211061026		SP07	9/06/2022 0.1	FILL - Clay	-	<0.5	< 0.5	<0.5	<0.5	< 0.5	<0.5	< 0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	1.2	<0.5	<0.5	-
EM2211061028		SP09	9/06/2022 0.1	FILL - Clay	-	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	< 0.5	<0.5	< 0.5	< 0.5	<0.5	< 0.5	<0.5	< 0.5	<0.5	0.6	1.2	<0.5	< 0.5	-
EM2211061019		BH07 - 0.1	9/06/2022 0.1	FILL - Reworked CLAY	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	1.2	<0.5	<0.5	-
EM2211061030		BH08 - 0.1	9/06/2022 0.1	FILL - Clayey SLIT	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	1.2	<0.5	<0.5	-
EM2211061031	4	BH09 - 0.5	9/06/2022 0.5	NAT - CLAY with silt	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	0.6	1.2	<0.5	<0.5	-
EM2211061033	-	BH09 - 0.1	9/06/2022 0.1	FILL - Silty CLAY	-	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2	1.4	2.9	<0.5	<0.7	-
EM2211061036 EM2211061037	Shed Area	BH10 - 0.1	9/06/2022 0.1 9/06/2022 0.5	FILL - Silty CLAY	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	1.2	<0.5	<0.5	-
EM2211061037 EM2211061039	1	BH10 - 0.5 BH11 - 0.1	9/06/2022 0.5	NAT - CLAY with silt FILL - Silty CLAY	-	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	1.2	<0.5	<0.5	-
EM2211061039	1	BH11 - 0.5	9/06/2022 0.5	NAT - CLAY with silt	-	-	-	-		-	-	-	-			-	-	-	- 0.5		-	- 0.6	- 1.2	-		-
EM2211061040	1	BH12 - 0.1	9/06/2022 0.1	FILL - Gravel with silt		-	-	-		-	-	-	 -	 -	-	 	-	-	 -	-	 	+ -	+ -	+ -	+ -	-
EM2211061042	†	BH12 - 0.5	9/06/2022 0.5	NAT - CLAY with silt	-	-	-	-	-	-	-	-	-	-	-	<u> </u>	-	-	-	-	-	-	-	-	-	-
	1	IIZ 0.0	J. 50, 2022 0.0	TO COLOR MINISTER									1	1	1	1	1	1	1	1	1	1	- 1	1	1	1

EM2211061043 Notes

- 1 NEPM 2013 Comm/Ind D and Res A/B HSL for Vapour Intrusion
 2 NEPM 2013 Generic Ecological Investigation Levels: Comm/Ind and Urban Residential and Public Spaces
 3 NEPM 2013 Table 1B(6) ESLs for Comm/Ind and Urban Res
- 4 NEPM 2013 Table 1A(1) HILs Res A, B and Comm/Ind D Soil LOR Limit of Reporting
- NL Not limiting
- Shading indicates analyte exceeds the relevant trigger value (highest criterion applied).
- < Result is less than the laboratory limit of reporting (LOR)
- * No Relevant Criteria
- Analysis not performed
- s Site Specific EIL

5/07/2022 Page 9 of 9

						Location					Trotting Track				LINEZINGGIGIG
						Field ID	BH01 - 0.1	BH01 - 0.5	BH02 - 0.1	BH03 - 0.1	BH03 - 0.5	BH04 - 0.1	BH05 - 0.1	BH05 - 0.5	BH06 - 0.1
						Date	9/06/2022	9/06/2022	9/06/2022	9/06/2022	9/06/2022	9/06/2022	9/06/2022	9/06/2022	9/06/2022
						Depth	0.1	0.5	0.1	0.1	0.5	0.1	0.1	0.5	0.1
					N N	latrix Type	FILL - Sandy CLAY	NAT- Silty CLAY	FILL - Sandy CLAY	FILL - Sandy CLAY	Clayey SILT	FILL - Clayey SAND	FILL - Gravelly CLAY	NAT- Silty CLAY	FILL - Sandy CLAY
				EPA Vic IV	WRG1828.2										
					_										
Analyte	Unit	LOR	Cat B	Cat C	Cat D	Fill									
Acid Sulphate Soils															
pH (CaCl2)	-	0.1	*	*	*	*	-	-	-	-	_	-	_	-	-
Particle Size															
Clay in soils <2um	%	1	*	*	*	*	-	-	-	-	-	-	-	-	-
Density	g/cm3	0.01	*	*	*	*	-	-	-	-	-	-	-	-	-
BTEX															
Naphthalene (VOC)	mg/kg	1	*	*	*	*	<1	-	⊲	<1	-	<1	<1	-	<1
Benzene	mg/kg	0.2	16	4	4	1	<0.2	-	<0.2	<0.2	-	<0.2	<0.2	-	<0.2
Toluene	mg/kg	0.5	12,800	3,200	3,200	*	<0.5	-	<0.5	<0.5	-	<0.5	<0.5	-	<0.5
Ethylbenzene	mg/kg	0.5	4,800	1,200	1,200	*	<0.5	-	<0.5	<0.5	-	<0.5	<0.5	-	<0.5
Xylene (m & p)	mg/kg	0.5	*	*	*	*	<0.5	-	<0.5	<0.5	-	<0.5	<0.5	-	<0.5
Xylene (o)	mg/kg	0.5	*	*	*	*	<0.5	-	<0.5	<0.5	-	<0.5	<0.5	-	<0.5
Xylene Total	mg/kg	0.5	9,600	2,400	2,400	*	<0.5	-	<0.5	<0.5	-	<0.5	<0.5	-	<0.5
Total BTEX	mg/kg	0.2	*	*	*	*	<0.2	-	<0.2	<0.2	-	<0.2	<0.2	-	<0.2
PAH															
Benzo(b+j+k)fluoranthene	mg/kg	1	*	*	*	*	-	-	-	-	-	-	-	-	-
Acenaphthene	mg/kg	0.5	*	*	*	*	<0.5	-	<0.5	<0.5	-	<0.5	<0.5	-	<0.5
Acenaphthylene	mg/kg	0.5	*	*	*	*	<0.5	-	<0.5	<0.5	-	<0.5	<0.5	-	<0.5
Anthracene	mg/kg	0.5	*	*	*	*	<0.5	-	<0.5	<0.5	-	<0.5	<0.5	-	<0.5
Benzo(a)anthracene	mg/kg	0.5	*	*	*	*	<0.5	-	<0.5	<0.5	-	<0.5	<0.5	-	<0.5
Benzo(a) pyrene	mg/kg	0.5	160	40	20	1	<0.5	-	<0.5	<0.5	-	<0.5	<0.5	-	<0.5
Benzo(b+j)fluoranthene	mg/kg	0.5	*	*	*	*	<0.5	-	<0.5	<0.5	-	<0.5	<0.5	-	<0.5
Benzo(g,h,i)perylene	mg/kg	0.5	*	*	*	*	<0.5	-	<0.5	<0.5	-	<0.5	<0.5	-	<0.5
Benzo(k)fluoranthene	mg/kg	0.5	*		*	*	<0.5	-	<0.5	<0.5	-	<0.5	<0.5	-	<0.5
Chrysene	mg/kg	0.5	*	*	*	*	<0.5	-	<0.5	<0.5	-	<0.5	<0.5	-	<0.5
Dibenz(a,h)anthracene	mg/kg	0.5	•	*	*	*	<0.5	-	<0.5	<0.5	-	<0.5	<0.5	-	<0.5
Fluoranthene	mg/kg	0.5 0.5	•	*	*	*	<0.5	-	<0.5	<0.5 <0.5	-	<0.5	<0.5	-	<0.5
Fluorene Indeno(1,2,3-c,d)pyrene	mg/kg	0.5	*	*	*	*	<0.5 <0.5	-	<0.5	<0.5	-	<0.5 <0.5	<0.5 <0.5	-	<0.5
Naphthalene	mg/kg	0.5	*	*	*	*	<0.5	-	<0.5 <0.5	<0.5	-	<0.5	<0.5	-	<0.5 <0.5
Phenanthrene	mg/kg mg/kg	0.5	*	*	*	*	<0.5	-	<0.5	<0.5	-	<0.5	<0.5	-	<0.5
Pyrene	mg/kg	0.5	*	*	*	*	<0.5	-	<0.5	<0.5	-	<0.5	<0.5	-	<0.5
Benzo(a)pyrene TEQ calc (Half)	mg/kg	0.5	*	*	*	*	0.6	-	0.6	0.6		0.6	0.6	_	0.6
Benzo(a)pyrene TEQ (LOR)	mg/kg	0.5	*	*	*	*	1.2	-	1.2	1.2	-	1.2	1.2	-	1.2
Benzo(a)pyrene TEQ calc (Zero)	mg/kg	0.5	*	*	*	*	<0.5	-	<0.5	<0.5	-	<0.5	<0.5	-	<0.5
PAHs (Sum of total)	mg/kg	0.5	400	100	50	20	<0.5	-	<0.5	<0.5	-	<0.5	<0.5	-	<0.5
PAHs (Vic EPA List)	mg/kg	0.5	400	100	50	20	-	-	-	-	-	-		-	-
Chlorinated Hydrocarbons	T -														
Chlorinated hydrocarbons EPAVic	mg/kg	0.01	*	*	*	1	-	-	-	-	-	-	-	-	-
1,1,1,2-tetrachloroethane	mg/kg	0.01	1,600	400	400	*	-	-	-	-	-	-	-	-	-
1,1,1-trichloroethane	mg/kg	0.01	4,800	1,200	1,200	*	-	-	-	-	-	-	-	-	-
1,1,2,2-tetrachloroethane	mg/kg	0.02	210	52	52	*	-	-	-	-	-	-	-	-	-
1,1,2-trichloroethane	mg/kg	0.04	190	48	48	*	-	-	-	-	-	-	-	-	-
1,1-dichloroethene	mg/kg	0.01	480	120	120	*	-	-	-	-	-	-	-	-	-
1,2-dichloroethane	mg/kg	0.02	48	12	12	*	-	-	-	-	-	-	-	-	-
Carbon tetrachloride	mg/kg	0.01	48	12	12	*	-	-	-	-	-	-	-	-	-
Chloroform	mg/kg	0.02	960	240	240	*	-	-	-	-	-	-	-	-	-
cis-1,2-dichloroethene	mg/kg	0.01	*	*	*	*	-	-	-	-	-	-	-	-	-
Dichloromethane	mg/kg	0.4	64	16	16	*	-	-	-	-	-	-	-	-	-
Hexachlorobutadiene	mg/kg	0.02	11	2.8	2.8	*	-	-	-	-	-	-	-	-	-
Trichloroethene	mg/kg	0.02	80	20	20	*	-	-	-	-	-	-	-	-	-
Tetrachloroethene	mg/kg	0.02	800	200	200	*	-	-	-	-	-	-	-	-	-
trans-1,2-dichloroethene	mg/kg	0.02	*	*	*	*	-	-	-	-	-	-	-	-	-
Vinyl chloride	mg/kg	0.02	4.8	1.2	1.2	*	-	-	-	-	-	-	-	-	-
Notes															

Notes

1 - EPA Victoria, July 2021, EPA Vic IWRG1828.2

mbgl - Meters Below Ground Level

LOR - Limit of Reporting

Shading indicates analyte exceeds the relevant trigger value (highest criterion applied).

< Result is less than the laboratory limit of reporting (LOR)

* No Relevant Criteria

- Analysis not performed

5/07/2022 Page 1 of 12

					c	mple Code	ENSOMOCIO OL	EM22410C4082	EM22410C4004	ENSONOCIORE	EN 20110C1000	ENGOMOCIOIO	EMOONOCAONO.	EM22440C4044	EM22440C4048
					Sar	nple Code Location	EM2211061001	EM2211061002	EM2211061004	EM2211061007	EM2211061008 Trotting Track	EM2211061010	EM2211061013	EM2211061014	EM2211061016
						Field ID	BH01 - 0.1	BH01 - 0.5	BH02 - 0.1	BH03 - 0.1	BH03 - 0.5	BH04 - 0.1	BH05 - 0.1	BH05 - 0.5	BH06 - 0.1
						Date	9/06/2022	9/06/2022	9/06/2022	9/06/2022	9/06/2022	9/06/2022	9/06/2022	9/06/2022	9/06/2022
						Depth	0.1	0.5	0.1	0.1	0.5	0.1	0.1	0.5	0.1
					N	latrix Type	FILL - Sandy CLAY	NAT- Silty CLAY	FILL - Sandy CLAY	FILL - Sandy CLAY	Clayey SILT	FILL - Clayey SAND	FILL - Gravelly CLAY	NAT- Silty CLAY	FILL - Sandy CLAY
				EDA Vio IV	WRG1828.21										
				EPA VICTV	WRG1828.2										
Analyte	Unit	LOR	Cat B	Cat C	Cat D	Fill									
Halogenated Benzenes															
1,2,4-trichlorobenzene	mg/kg	0.01	*	*	*	*	-	-	-	-	-	-	-	-	-
1,2-dichlorobenzene	mg/kg	0.02	24,000	6,000	6,000	*	-	-	-	-	-	-	-	-	-
1,4-dichlorobenzene	mg/kg	0.02	640	160	160	*	1	-	-	-	-	-	-	-	-
Chlorobenzene	mg/kg	0.02	4,800	1,200	1,200	*	-	-	-	-	-	-	-	-	-
Hexachlorobenzene	mg/kg	0.03	*	*	*	*	< 0.05	-	-	-	-	-	-	-	-
Herbicides															
2,4,5-Trichlorophenoxy Acetic Acid	mg/kg	0.02	*	*	*	*	< 0.02	-	-	-	-	-	-	-	-
2,4,5-TP (Silvex)	mg/kg	0.02	*	*	*	*	< 0.02	-	-	-	-	-	-	-	-
Hedonal	mg/kg	0.02	480	120	120	*	< 0.02	-	-	-	-	-	-	-	-
2,4-Dichlorprop	mg/kg	0.02	*	*	*	*	< 0.02	-	-	-	-	-	-	-	-
(2,4-DB)	mg/kg	0.02	*	*	*	*	< 0.02	-	-	-	-	-	-	-	-
4-Chlorophenoxy acetic acid	mg/kg	0.02	*	*	*	*	< 0.02	-	-	-	-	-	-	-	-
Atrazine	mg/kg	0.05	*	*	*	*	< 0.05	-	-	-	-	-	-	-	-
Clopyralid	mg/kg	0.02	*	*	*	*	< 0.02	-	-	-	-	-	-	-	-
Dicamba	mg/kg	0.02	*	*	*	*	< 0.02	-	-	-	-	-	-	-	-
Dinoseb	mg/kg	5	*	*	*	*	•	-	-	-	-	-	-	-	-
Fluroxypyr	mg/kg	0.02	*	*	*	*	< 0.02	-	-	-	-	-	-	-	-
2-Methyl-4-chlorophenoxyacetic acid	mg/kg	0.02	*	*	*	*	< 0.02	-	-	-	-	-	-	-	-
Acid	mg/kg	0.02	*	*	*	*	< 0.02	-	-	-	-	-	-	-	-
Mecoprop	mg/kg	0.02	*	*	*	*	< 0.02	-	-	-	-	-	-	-	-
Triclopyr	mg/kg	0.02	*	*	*	*	< 0.02	-	-	-	-	-	-	-	-
Metals															
Arsenic	mg/kg	5	2,000	500	500	20	<5	9	<5	<5	<5	<5	<5	6	<5
Barium	mg/kg	10	25,000	6,250	6,250	*	60	110	-	-	10	-	-	40	-
Beryllium	mg/kg	1	400	100	100	*	1	2	-	-	<1	-	-	<1	-
Boron	mg/kg	50	60,000	15,000	15,000	*	<50	<50	-	-	<50	-	-	<50	-
Cadmium	mg/kg	1	400	100	100	3	<	<1	⊲	<1	<1	<1	<1	<1	<1
Chromium (hexavalent)	mg/kg	0.5	2,000	500	500	1	<0.5	-	-	-	-	-	-	-	-
Chromium (III+VI)	mg/kg	2	*	*	*	*	23	40	13	9	8	16	19	42	14
Cobalt	mg/kg	2	*	*	*	*	18	14	-	-	<2	-	-	15	-
Copper	mg/kg	5	20,000	5,000	5,000	100	25	14	15	14	<5	9	10	8	20
Iron	%		*	*	*	*	-	-	-	-	-	-	-	-	-
Lead	mg/kg	5	6,000	1,500	1,500	300	5	13	<5	<5	<5	6	6	8	15
Manganese	mg/kg	5	*	*	*	*	450	177	-	-	26	-	-	89	-
Mercury	mg/kg	0.1	300	75	75	1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Molybdenum	mg/kg	2	4,000	1,000	1,000	40	-	-	-	-	-	-	-	-	-
Nickel	mg/kg	2	12,000	3,000	3,000	60	52	38	37	39	2	18	26	29	34
Selenium	mg/kg	5	40,000	10,000	10,000	10	<5	<5	-	-	<5	-	-	<5	-
Silver	mg/kg	2	720	180	180	10	-	-	-	-	-	-	-	-	-
Tin	mg/kg	5	*	*	*	50	-	-	_	_	-	-	-	-	-
Vanadium	mg/kg	5	*	*	*	*	34	54	-	_	20	-		64	-
Zinc	mg/kg	5	140,000	35,000	35,000	200	44	22	34	27	<5	16	18	9	52
Notes			,	,0	,									-	

Notes

1 - EPA Victoria, July 2021, EPA Vic IWRG1828.2

mbgl - Meters Below Ground Level

LOR - Limit of Reporting

Shading indicates analyte exceeds the relevant trigger value (highest criterion applied).

< Result is less than the laboratory limit of reporting (LOR)

* No Relevant Criteria

- Analysis not performed

5/07/2022 Page 2 of 12

					Sar		EM2211061001	EM2211061002	EM2211061004	EM2211061007	EM2211061008	EM2211061010	EM2211061013	EM2211061014	EM2211061016
						Location	DI IOA O A	BUILDY OF	D1100 04	D1100 04	Trotting Track	BUILD A DA	DUOT 04	BUOF OF	DUICE OA
						Field ID Date	BH01 - 0.1 9/06/2022	BH01 - 0.5 9/06/2022	BH02 - 0.1 9/06/2022	BH03 - 0.1 9/06/2022	BH03 - 0.5 9/06/2022	BH04 - 0.1 9/06/2022	BH05 - 0.1 9/06/2022	BH05 - 0.5 9/06/2022	BH06 - 0.1 9/06/2022
						Depth	0.1	0.5	0.1	0.1	0.5	0.1	0.1	0.5	0.1
					N	Matrix Type	FILL - Sandy CLAY	NAT- Silty CLAY	FILL - Sandy CLAY	FILL - Sandy CLAY	Clayey SILT	FILL - Clayey SAND	FILL - Gravelly CLAY	NAT- Silty CLAY	FILL - Sandy CLAY
							Ties outly out	HAT SILY SEAT	THE Sullay SERT	TIEE Sundy SERI	Oldycy OlE1	TIEL Oldycy SARD	TIEE GRAVERY GEAT	NAT SILY CEAT	TIEE Sundy SEAT
				EPA Vic IV	WRG1828.21	'									
Amelian	1.1-14	LOD	C++ D	C-+ C	C-+D	Fill									
Analyte	Unit	LOR	Cat B	Cat C	Cat D	FIII									
Organic															
Total Organic Carbon	%		*	*	*	*	-	-	-	-	-	-	-	-	-
Organochlorine Pesticides															
Organochlorine pesticides EPAVic	mg/kg	0.03	*	*	*	1	-	-	-	-	-	-	-	-	-
4,4-DDE	mg/kg	0.05	*	*	*	*	< 0.05	-	-	-	-	-	-	-	-
a-BHC	mg/kg	0.03	*	*	*	*	< 0.05	-	-	-	-	-	-	-	-
Aldrin	mg/kg	0.03	*	*	*	*	< 0.05	-	-	-	-	-	-	-	-
Aldrin + Dieldrin	mg/kg	0.05	4.8	1.2	1.2	*	< 0.05	-	-	-	-	-	-	-	-
b-BHC	mg/kg	0.03	*	*	*	*	< 0.05	-	-	-	-	-	-	-	-
Chlordane	mg/kg	0.03	16	4	4	*	-	-	-	-	-	-	-	-	-
Chlordane (cis)	mg/kg	0.03	*	*	*	*	< 0.05	-	-	-	-	-	-	-	-
Chlordane (trans)	mg/kg	0.03	*	*	*	*	< 0.05	-	-		-	-	-	-	-
d-BHC	mg/kg	0.03	*	*	*	*	< 0.05	-	-	-	-	-	-	-	-
DDD	mg/kg	0.05	*	*	*	*	< 0.05	-	-	-	-	-	-	-	-
DDT	mg/kg	0.05	*	*	*	*	<0.2	-	-	-	-	-	-	-	-
DDT+DDE+DDD	mg/kg	0.05	50	50	50	*	< 0.05	-	-	-	-	-	-	-	-
Dieldrin	mg/kg	0.03	*	*	*	*	< 0.05	-	-	-	-	-	-	-	-
Endosulfan	mg/kg	0.05	*	*	*	*	< 0.05	-	-	_	-	-	-	-	-
Endosulfan I	mg/kg	0.03	*	*	*	*	< 0.05	-	-	-	-	-	-	-	-
Endosulfan II	mg/kg	0.03	*	*	*	*	< 0.05	-	-	-	-	-	-	-	-
Endosulfan sulphate	mg/kg	0.03	*	*	*	*	< 0.05	-	-	-	-	-	-	-	-
- Endrin	mg/kg	0.03	*	*	*	*	< 0.05	-	-	-	-	-	-	-	-
Endrin aldehyde	mg/kg	0.03	*	*	*	*	< 0.05	-	-	-	-	-	-	-	-
Endrin ketone	mg/kg	0.05	*	*	*	*	< 0.05	-	-	-	-	-	-	-	-
g-BHC (Lindane)	mg/kg	0.03	*	*	*	*	< 0.05	-	-	-	-	-	-	_	-
Heptachlor	mg/kg	0.03	4.8	1.2	1.2	*	< 0.05	_	_	_	_	_	_	_	_
Heptachlor epoxide	mg/kg	0.03	*	*	*	*	< 0.05	_	_	_	_	_	_	_	_
Methoxychlor	mg/kg	0.03	*	*	*	*	<0.2	-	_	_	_	_	_	_	_
Toxaphene	mg/kg	2	*	*	*	*	<>	_	_	_	_	_	_	_	-
Inorganics															
Exchangeable Calcium Percent	%	0.2	*	*	*	*	_	_	_	_	_	_	_	_	_
Exchangeable Magnesium Percent	%	0.2	*	*	*	*	-	-	-	-	_	-	_	-	-
Exchangeable Potassium Percent	%	0.2	*	*	*	*	-	-	_	_	_	_	_	_	_
Exchangeable Sodium Percent	%	0.2	*	*	*	*	_	_	_	_	_	_	_	_	_
Magnesium/Potassium Ratio		0.2	*	*	*	*	_	_	_	_	_	_	_	_	_
Moisture Content	%	1	*	*	*	*	6.8	24.2	5.1	6.2	5.5	14.3	18.8	18.1	7.8
Exchangeable Calcium	meg/100g	0.2	*	*	*	*	-	-	-	-	-	-	-	-	-
Exchangeable Magnesium	meq/100g	0.2	*	*	*	*	-	-	-	-	-	-	-	-	-
Exchangeable Potassium	meq/100g	0.2	*	*	*	*	-	_	-	-	_	_	-	-	-
Exchangeable Sodium	meg/100g	0.2	*	*	*	*	-	-	-	-	-	-	-	-	-
Cation Exchange Capacity	meq/100g	0.2	*	*	*	*	-	-	-	-	-	-	-	-	-
Cyanide Total	mg/kg	1	10,000	2,500	2,500	50	-	-	-	-	-	-	-	_	-
Electrical Conductivity (Lab)	μS/cm	1	*	*	*	*	-	-	-	-	-	-	-	-	-
Calcium/Magnesium Ratio	-	0.2	*	*	*	*	-	-	-	-	-	-	-	-	-
Fluoride	mg/kg	40	40,000	10,000	10,000	450	-	_	-	-	_	_	-	_	-
pH (Lab)	-	0.1	2-12.5	*	4-10	4-10	-	-	-	-	-	-	-	-	-
МАН	İ							İ		<u> </u>			İ		
EPAVic	mg/kg	0.2	*	*	*	7	-	-	_	-	-	_	_	-	-
Styrene	mg/kg	0.5	480	120	120	*	-	-	-	-	-	-	-	-	-
Particulates		<u> </u>								i	<u> </u>			1	
Organic Matter	%	0.5	*	*	*	*	-	-	-	-	-	_	-	-	-
PCBs		5.5								 	 			 	
PCBs (Sum of total)	mg/kg	0.1	6	50	2	2	<0.1	_	_	_	_	_	-	_	-
Cyanides	1 3 3	- J.,		30		_	-0.1			 	 			 	
Cyanides Cyanide (WAD)	mg/kg	1	*	*	*	*	<1	_	-	_	_	_	-	_	-
Netes	3,5								1		l	1			

Notes

1 - EPA Victoria, July 2021, EPA Vic IWRG1828.2

mbgl - Meters Below Ground Level

LOR - Limit of Reporting

Shading indicates analyte exceeds the relevant trigger value (highest criterion applied).

< Result is less than the laboratory limit of reporting (LOR)

* No Relevant Criteria

- Analysis not performed

5/07/2022 Page 3 of 12

					Sar	nple Code	EM2211061001	EM2211061002	EM2211061004	EM2211061007	EM2211061008	EM2211061010	EM2211061013	EM2211061014	EM2211061016
						Location	51161 61	5000			Trotting Track		21122 21		2000 01
						Field ID	BH01 - 0.1	BH01 - 0.5	BH02 - 0.1	BH03 - 0.1	BH03 - 0.5	BH04 - 0.1	BH05 - 0.1	BH05 - 0.5	BH06 - 0.1
						Date Depth	9/06/2022	9/06/2022 0.5	9/06/2022	9/06/2022	9/06/2022 0.5	9/06/2022 0.1	9/06/2022 0.1	9/06/2022	9/06/2022
					N.	latrix Type	FILL - Sandy CLAY	NAT- Silty CLAY	FILL - Sandy CLAY	FILL - Sandy CLAY	Clayey SILT	FILL - Clayey SAND	FILL - Gravelly CLAY	NAT- Silty CLAY	0.1 FILL - Sandy CLAY
					ıv.	iduix Type	FILE - Salidy CLAT	NAT- Silty CLAT	FILL - Salidy CLAT	FILE - Salidy CLAT	Clayey SILT	FILL - Clayey SAND	FILL - Gravelly CLAT	NAT- SILLY CLAT	FILE - Salidy CLAT
				EPA Vic IV	VRG1828.21										
							i								
Analyte	Unit	LOR	Cat B	Cat C	Cat D	Fill									
TRH															
C6-C10 Fraction (F1)	mg/kg	10	*	*	*	*	<10	_	<10	<10	_	<10	<10	_	<10
C6-C10 (F1 minus BTEX)	mg/kg	10	*	*	*	*	<10	-	<10	<10	-	<10	<10	-	<10
>C10-C16 Fraction (F2)	mg/kg	50	*	*	*	*	<50	_	<50	<50	_	<50	<50	-	<50
>C10-C16 Fraction (F2 minus	mg/kg	50	*	*	*	*	<50	-	<50	<50	_	<50	<50	_	<50
>C16-C34 Fraction (F3)	mg/kg	100	*	*	*	*	<100	-	<100	<100	-	<100	<100	_	<100
>C34-C40 Fraction (F4)	mg/kg	100	*	*	*	*	<100	-	<100	<100	-	<100	<100	-	<100
>C10-C40 Fraction (Sum)	mg/kg	50	*	*	*	*	<50	-	<50	<50	_	<50	<50	_	<50
Phenois		30							100						100
3&4-Methylphenol (m&p-cresol)	mg/kg	1	*	*	*	*	<1	-	_	_	_	_	_	_	_
2,3,5,6-Tetrachlorophenol		0.03	*	*	*	*		-			1				
2,3,5,6-1 etracnioropnenoi 2,4,5-Trichlorophenol	mg/kg					*	<0.5		-	-	-	-	-	-	-
2,4,5-Trichlorophenol	mg/kg	0.05	64,000	16,000	16,000	*		-	-	-	-	-	-	-	-
	mg/kg	0.05	320	80	80	*	<0.5	-	-	-	-	-	-	-	-
2,4-Dichlorophenol	mg/kg	0.03	3,200	800	800		<0.5	-	-	-	-	-	-	-	-
2,4-Dimethylphenol	mg/kg	0.5	*	*	*	*	<0.5	-	-	-	-	-	-	-	-
2,4-Dinitrophenol	mg/kg	5	*	*	*	*	-	-	-	-	-	-	-	-	-
2,6-Dichlorophenol	mg/kg	0.03	*	*	*	*	<0.5	-	-	-	-	-	-	-	-
2,3,4,5 & 2,3,4,6-Tetrachlorophenol	mg/kg	0.05	*	*	*	*	-	-	-	-	-	-	-	-	-
2-Chlorophenol	mg/kg	0.03	4,800	1,200	1,200	*	<0.5	-	-	-	-	-	-	-	-
2-Methylphenol	mg/kg	0.5	*	*	*	*	<0.5	-	-	-	-	-	-	-	-
2-Nitrophenol	mg/kg	0.5	*	*	*	*	<0.5	-	-	-	-	-	-	-	-
4,6-Dinitro-2-methylphenol	mg/kg	5	*	*	*	*	-	-	-	-	-	-	-	-	-
4,6-Dinitro-o-cyclohexyl phenol	mg/kg	5	*	*	*	*	-	-	-	-	-	-	-	-	-
4-chloro-3-methylphenol	mg/kg	0.03	*	*	*	*	<0.5	-	-	-	-	-	-	-	-
4-Nitrophenol	mg/kg	5	*	*	*	*	-	-	-	-	-	-	-	-	-
Pentachlorophenol	mg/kg	0.2	*	*	*	*	<2	-	-	-	-	-	-	-	-
Picloram	mg/kg	0.02	*	*	*	*	< 0.02	-	-	-	-	-	-	-	-
Phenol	mg/kg	0.5	*	*	*	*	< 0.5	-	-	-	-	-	-	-	-
Phenols (halogenated) EPAVic	mg/kg	0.03	*	*	*	1	-	-	-	-	-	-	-	-	-
Phenols (non-halogenated) EPAVic	mg/kg	1	2,200	560	560	60	-	-	-	-	-	-	-	-	-
Organophosphorous Pesticides															
Azinophos methyl	mg/kg	0.05	*	*	*	*	< 0.05	-	-	-	-	-	-	-	-
Bromophos-ethyl	mg/kg	0.05	*	*	*	*	< 0.05	-	-	-	-	-	-	-	-
Carbophenothion	mg/kg	0.05	*	*	*	*	< 0.05	-	-	-	-	-	-	-	-
Chlorfenvinphos	mg/kg	0.05	*	*	*	*	< 0.05	-	-	-	_	-	-	-	-
Chlorpyrifos	mg/kg	0.05	*	*	*	*	< 0.05	-	-	-	-	-	-	-	-
Chlorpyrifos-methyl	mg/kg	0.05	*	*	*	*	< 0.05	-	_	-	_	-	-	_	-
Diazinon	mg/kg	0.05	*	*	*	*	<0.05	-	_	-	_	_	-	_	-
Dichlorvos	mg/kg	0.05	*	*	*	*	<0.05	-	_	-	_	_	-	_	-
Dimethoate	mg/kg	0.05	*	*	*	*	< 0.05	-	-	-	-	-	-	-	-
Ethion	mg/kg	0.05	*	*	*	*	<0.05	-	_	_	_	_	-	_	_
Fenthion	mg/kg	0.05	*	*	*	*	<0.05	-	-	-	_	_	-	_	_
Malathion	mg/kg	0.05	*	*	*	*	<0.05	-	-	-	-	-	-	-	-
Methyl parathion	mg/kg	0.05	*	*	*	*	<0.2	-	-	-	-	-	-	-	-
Monocrotophos	mg/kg	0.2	*	*	*	*	<0.2	-	-	-	-	-	-	-	-
Prothiofos	mg/kg	0.2	*	*	*	*	<0.2	-	-	-	-	-	-	-	-
	g/Ng	0.05					\U.U5	-	-	-	-	-	-	-	-
Pesticides Difactoria	m = /1	0.05	*	*	*	*	-0.0F		-	-					
Bifenthrin	mg/kg	0.05	*	*	*	*	<0.05	-	-	-	-	-	-	-	-
Demeton-S-methyl	mg/kg	0.05					< 0.05	-	-	-	-	-	-	-	-
Fenamiphos	mg/kg	0.05	*	*	*	*	<0.05	-	-	-	-	-	-	-	-
Mirex	mg/kg	0.05	*	*	*	*	<0.05	-	-	-	-	-	-	-	-
Parathion	mg/kg	0.2	*	*	*	*	<0.2	-	-	-	-	-	-	-	-
Pirimphos-ethyl	mg/kg	0.05	*	*	*	*	< 0.05	-	-	-	-	-	-	-	-
TPH	<u> </u>														
C6-C9 Fraction	mg/kg	10	2,600	650	325	100	<10	-	<10	<10	-	<10	<10	-	<10
C10-C14 Fraction	mg/kg	50	*	*	*	*	<50	-	<50	<50	-	<50	<50	-	<50
C15-C28 Fraction	mg/kg	100	*	*	*	*	<100	-	<100	<100	-	<100	<100	-	<100
C29-C36 Fraction	mg/kg	100	*	*	*	*	<100	-	<100	<100	-	<100	<100	-	<100
C10-C36 Fraction (Sum)	mg/kg	50	40,000	10,000	5,000	1,000	<50	-	<50	<50	-	<50	<50	-	<50

Note:

1 - EPA Victoria, July 2021, EPA Vic IWRG1828.2

mbgl - Meters Below Ground Level

LOR - Limit of Reporting

Shading indicates analyte exceeds the relevant trigger value (highest criterion applied).

< Result is less than the laboratory limit of reporting (LOR)

* No Relevant Criteria

- Analysis not performed

5/07/2022 Page 4 of 12

Part						281	nple Code	EM2211061020	EM2211061022	EM2211061024	EM2211061026	EM2211061028
Part							Location	CDO4	CDOO	Stockpile	CDOZ	CDOO
Part												
Analyte												
Aralyte						N						
Analysis Unit LOR Ceir Cord P F8 And Sulphate Solis								, 122 0.03	, 5.6)		5.63	,
Add Sulphate Soils					EPA Vic IV	VRG1828.2	'					
Add Sulphate Soils	Analyto	Holt	LOP	Cat P	CatiC	Cat D	Eill					
Selection	Allalyte	Offic	LOR	Cdl B	Cal C	Cal D	FIII					
Particle Size	Acid Sulphate Soils											
Cay in a solid - Cauma	pH (CaCl2)	-	0.1	*	*	*	*	7.5	-	-	-	-
Density 9 9 9 9 9 9 9 9 9	Particle Size											
New Part					*		*	-	-	-	-	-
Nephthalene (VOC)		g/cm3	0.01	*	*	*	*	-	-	-	-	-
Benzene												
Totalane												
Enlybenzene									-			
Xylene (n & p) mg/kg 0.5 .												
Xylene (o) mg/kg 0.5 y y 4.05 . 6.5 4.05 . 6.5 9.60 2.400 2.400 . 4.05 . 4.05 . 4.05 . 4.05 . 4.05 . 4.05 . 4.05 . 4.05 . 4.05 . 4.05 . 4.05 . 4.05 . 4.05 . 4.05 . 4.05 . 4.05 . 4.05 . 4.05 . 4.05 .												
March Marc					_							
Date PAH												
PAH Benzoltytikfluoranthene mg/kg 1 *												
Bezoptyl-Killupranthene		mg/kg	0.2					-	-	<u.z< td=""><td><u.2< td=""><td><u.2< td=""></u.2<></td></u.2<></td></u.z<>	<u.2< td=""><td><u.2< td=""></u.2<></td></u.2<>	<u.2< td=""></u.2<>
Acenaphthylene mg/kg 0.5		mallea		*	*	*		40				
Acenaphthylene mg/kg 0.5 · · · · · · · · · · · · · · · · · · ·		1										
Anthracene mg/kg 0.5		1										
Benzolg pyrene mg/kg 0.5 100 40 20 1 40.5 - 40.5 40.5												
Benzo(a) pyrene mg/kg 0.5 %60 40 20 1 0.5 - 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5		1			*	*	*					+
Benzo(bijfluoranthene mg/kg 0.5					40	20	1					
Benzo(g,h,l)perylene												
Benzo(k)fluoranthene				*	*	*	*					
Chrysene		1		*	*	*	*					
Dibenz(a,h)anthracene mg/kg 0.5				*	*	*	*	< 0.5	_			
Fluoranthene mg/kg 0.5				*	*	*	*					+
Fluorene		1		*	*	*	*	<0.5	-			
Indeno(1,2,3-c,d)pyrene	Fluorene		0.5	*	*	*	*	<0.5	-	<0.5	< 0.5	<0.5
Phenanthrene	Indeno(1,2,3-c,d)pyrene		0.5	*	*	*	*	<0.5	-	< 0.5	< 0.5	<0.5
Pyrene	Naphthalene	mg/kg	0.5	*	*	*	*	<0.5	-	<0.5	<0.5	<0.5
Particular Par	Phenanthrene	mg/kg	0.5	*	*	*	*	<0.5	-	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ (LOR) mg/kg 0.5	Pyrene	mg/kg	0.5	*	*	*	*	<0.5	-	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc (Zero) mg/kg 0.5 1	Benzo(a)pyrene TEQ calc (Half)	mg/kg	0.5	*	*	*	*	0.6	-	0.6	0.6	0.6
PAHs (Sum of total) mg/kg 0.5 400 100 50 20 <0.5 <0.5 <0.5 <0.5	Benzo(a)pyrene TEQ (LOR)	mg/kg	0.5	*	*	*	*	1.2	-	1.2	1.2	1.2
PAHs (Vic EPA List)	Benzo(a)pyrene TEQ calc (Zero)	mg/kg	0.5	*	*	*	*	<0.5	-	<0.5	<0.5	<0.5
Chlorinated Hydrocarbons mg/kg 0.01 * * 1 <0.01 -		mg/kg	0.5	400	100	50		-	-	<0.5	<0.5	<0.5
Chlorinated hydrocarbons EPAVic mg/kg 0.01	PAHs (Vic EPA List)	mg/kg	0.5	400	100	50	20	<0.5	-	-	-	-
1,11,2-tetrachloroethane	•											
1,1,1-trichloroethane mg/kg 0.01 4,800 1,200 • 0.01 - - - - - - - 1,1,2,2-tetrachloroethane mg/kg 0.02 210 52 52 • 0.02 - <		1					1		-	-	-	-
1,1,2,2-tetrachloroethane	***						*		-	-	-	-
1,1,2-trichloroethane		1							-	-	-	-
1,1-dichloroethene		1								-		-
12-dichloroethane		1										
Carbon tetrachloride mg/kg 0.02 960 240 240 0.02		1										
Chloroform mg/kg 0.02 960 240 240 * <0.02		1										
Sillorotetiin ingritg 0.02 300 210 210 0.02												
		1										
		1				_			-			
Didinoronicatane ingrity 0.4 04 10 10 0.5		1										
Triodefiloropatation ing/kg 0.02 ii 2.0 2.0 0.02												
Thendrocateric linging 0.02 00 20 20 20 0.02												
Tetrachloroethene mg/kg 0.02 800 200 200 * <0.02 -		1					*					
Vinyl chloride mg/kg 0.02 4.8 1.2 1.2 * <0.02							*					
Notes		1 33	0.02	7.0	1.2	1.2		-0.02	-			

Notes

1 - EPA Victoria, July 2021, EPA Vic IWRG1828.2

mbgl - Meters Below Ground Level

LOR - Limit of Reporting

Shading indicates analyte exceeds the relevant trigger value (highest criterion applied).

< Result is less than the laboratory limit of reporting (LOR)

5/07/2022 Page 5 of 12

^{*} No Relevant Criteria

⁻ Analysis not performed

					San	nple Code	EM2211061020	EM2211061022	EM2211061024	EM2211061026	EM2211061028
						Location			Stockpile		
						Field ID	SP01	SP03	SP05	SP07	SP09
						Date	9/06/2022	9/06/2022	9/06/2022	9/06/2022	9/06/2022
						Depth	0.1	0.1	0.1	0.1	0.1
					M	latrix Type	FILL - Clay	FILL - Clay	FILL - Clay	FILL - Clay	FILL - Clay
				EPA Vic IV	/RG1828.21						
Analyte	Unit	LOR	Cat B	Cat C	Cat D	Fill					
Halogenated Benzenes											
1,2,4-trichlorobenzene	mg/kg	0.01	*	*	*	*	<0.01	_	_	_	-
1,2-dichlorobenzene	mg/kg	0.02	24.000	6.000	6,000	*	<0.02	_	_	_	_
1,4-dichlorobenzene	mg/kg	0.02	640	160	160	*	<0.02	-	-	-	-
Chlorobenzene	mg/kg	0.02	4,800	1,200	1,200	*	<0.02	-	-	_	-
Hexachlorobenzene	mg/kg	0.03	*	*	*	*	< 0.03	-	-	-	-
Herbicides										İ	
2,4,5-Trichlorophenoxy Acetic Acid	mg/kg	0.02	*	*	*	*	-	-	-	-	-
2,4,5-TP (Silvex)	mg/kg	0.02	*	*	*	*	_	-	-	_	-
Hedonal	mg/kg	0.02	480	120	120	*	_	-	-	-	-
2,4-Dichlorprop	mg/kg	0.02	*	*	*	*	-	-	-	-	-
(2,4-DB)	mg/kg	0.02	*	*	*	*	_	-	-	-	-
4-Chlorophenoxy acetic acid	mg/kg	0.02	*	*	*	*	_	-	-	-	-
Atrazine	mg/kg	0.05	*	*	*	*	-	-	-	-	-
Clopyralid	mg/kg	0.02	*	*	*	*	-	-	-	-	-
Dicamba	mg/kg	0.02	*	*	*	*	_	-	-	-	-
Dinoseb	mg/kg	5	*	*	*	*	<5	-	-	-	-
Fluroxypyr	mg/kg	0.02	*	*	*	*	-	-	-	-	-
2-Methyl-4-chlorophenoxyacetic acid	mg/kg	0.02	*	*	*	*	-	-	-	-	-
Acid	mg/kg	0.02	*	*	*	*	-	-	-	-	-
Mecoprop	mg/kg	0.02	*	*	*	*	-	-	-	-	-
Triclopyr	mg/kg	0.02	*	*	*	*	-	-	-	-	-
Metals											
Arsenic	mg/kg	5	2,000	500	500	20	8	6	7	5	6
Barium	mg/kg	10	25,000	6,250	6,250	*	-	80	-	-	-
Beryllium	mg/kg	1	400	100	100	*	-	<1	-	-	-
Boron	mg/kg	50	60,000	15,000	15,000	*	-	<50	-	-	-
Cadmium	mg/kg	1	400	100	100	3	<1	<1	<1	<1	<1
Chromium (hexavalent)	mg/kg	0.5	2,000	500	500	1	<0.5	-	-	-	-
Chromium (III+VI)	mg/kg	2	*	*	*	*	_	31	52	28	31
Cobalt	mg/kg	2	*	*	*	*	_	12	-	-	-
Copper	mg/kg	5	20,000	5,000	5,000	100	14	12	20	11	13
Iron	%		*	*	*	*	-	-	-	-	-
Lead	mg/kg	5	6,000	1,500	1,500	300	13	13	14	13	12
Manganese	mg/kg	5	*	*	*	*	-	256	-	-	-
Mercury	mg/kg	0.1	300	75	75	1	<0.1	<0.1	<0.1	<0.1	<0.1
Molybdenum	mg/kg	2	4.000	1,000	1,000	40	<2	-	-	-	-
Nickel	mg/kg	2	12,000	3,000	3,000	60	33	27	51	24	28
Selenium	mg/kg	5	40,000	10,000	10,000	10	<5	<5	-	-	-
Silver	mg/kg	2	720	180	180	10	<2	-	-	-	-
Tin	mg/kg	5	*	*	*	50	<5	-	-	-	-
Vanadium	mg/kg	5	*	*	*	*	,	34	_	_	-
Zinc	mg/kg	5	140,000	35,000	35,000	200	36	36	33	31	36
Notes	_	•									

Notes

1 - EPA Victoria, July 2021, EPA Vic IWRG1828.2

mbgl - Meters Below Ground Level

LOR - Limit of Reporting

Shading indicates analyte exceeds the relevant trigger value (highest criterion applied).

< Result is less than the laboratory limit of reporting (LOR)

5/07/2022 Page 6 of 12

^{*} No Relevant Criteria

⁻ Analysis not performed

						Location	CDO4	CDOO	Stockpile	CDOT	CDOO
						Field ID	SP01	SP03	SP05	SP07	SP09
						Date	9/06/2022	9/06/2022	9/06/2022	9/06/2022	9/06/2022
						Depth	0.1	0.1	0.1	0.1	0.1
					M	latrix Type	FILL - Clay	FILL - Clay	FILL - Clay	FILL - Clay	FILL - Clay
				EPA Vic IW	/RG1828.2 ¹	1					
Analyte	Unit	LOR	Cat B	Cat C	Cat D	Fill					
Organic Total Organic Carbon	%		*	*	*	*	_	_	-	-	_
	70						-	-	-	-	-
Organochlorine Pesticides				*	*						
Organochlorine pesticides EPAVic	mg/kg	0.03	*			1	< 0.03	-	-	-	-
4,4-DDE	mg/kg	0.05	*	*	*	*	<0.05	-	-	-	-
a-BHC	mg/kg	0.03	*	*	*	*	< 0.03	-	-	-	-
Aldrin	mg/kg	0.03	*	*	*	*	< 0.03	-	-	-	-
Aldrin + Dieldrin	mg/kg	0.05	4.8	1.2	1.2	*	-	-	-	-	-
b-BHC	mg/kg	0.03	*	*	*	*	< 0.03	-	-	-	-
Chlordane	mg/kg	0.03	16	4	4	*	< 0.03	-	-	-	-
Chlordane (cis)	mg/kg	0.03	*	*	*	*	< 0.03	-	-	-	-
Chlordane (trans)	mg/kg	0.03	*	*	*	*	< 0.03	-	-	-	-
d-BHC	mg/kg	0.03	*	*	*	*	< 0.03	-	-	-	-
DDD	mg/kg	0.05	*	*	*	*	< 0.05	-	-	-	-
DDT	mg/kg	0.05	*	*	*	*	< 0.05	-	-	-	-
DDT+DDE+DDD	mg/kg	0.05	50	50	50	*	-	_	_	_	_
Dieldrin	mg/kg	0.03	*	*	*	*	< 0.03	_	-	-	_
Endosulfan	mg/kg	0.05	*	*	*	*	-	_	-	_	_
Endosulfan I	mg/kg	0.03	*	*	*	*	<0.03		-	_	-
Endosulfan II		0.03	*	*	*	*	<0.03	-	-	-	-
	mg/kg		*	*	*	*					
Endosulfan sulphate	mg/kg	0.03	*	*	*	*	<0.03	-	-	-	-
Endrin	mg/kg	0.03		*	*	*	<0.03	-	-	-	-
Endrin aldehyde	mg/kg	0.03	*				<0.03	-	-	-	-
Endrin ketone	mg/kg	0.05	*	*	*	*	-	-	-	-	-
g-BHC (Lindane)	mg/kg	0.03	*	*	*	*	< 0.03	-	-	-	-
Heptachlor	mg/kg	0.03	4.8	1.2	1.2	*	< 0.03	-	-	-	-
Heptachlor epoxide	mg/kg	0.03	*	*	*	*	< 0.03	-	-	-	-
Methoxychlor	mg/kg	0.03	*	*	*	*	< 0.03	-	-	-	-
Toxaphene	mg/kg	2	*	*	*	*	-	-	-	-	-
Inorganics											
Exchangeable Calcium Percent	%	0.2	*	*	*	*	-	-	-	-	-
Exchangeable Magnesium Percent	%	0.2	*	*	*	*	-	-	-	-	-
Exchangeable Potassium Percent	%	0.2	*	*	*	*	-	-	-	-	-
Exchangeable Sodium Percent	%	0.2	*	*	*	*	-	-	-	-	-
Magnesium/Potassium Ratio	_	0.2	*	*	*	*	_	_	_	_	_
Moisture Content	%	1	*	*	*	*	7.4	7.3	15.8	5.7	5.5
Exchangeable Calcium	meq/100g	0.2	*	*	*	*	-	-	-	-	-
Exchangeable Magnesium	meq/100g	0.2	*	*	*	*	-	-	-	-	-
Exchangeable Potassium	1	0.2	*	*	*	*					
Exchangeable Sodium	meq/100g meq/100g	0.2	*	*	*	*	-	-	-	-	-
Cation Exchange Capacity			*	*	*		-	-	-	-	-
	meq/100g	0.2					-	-	-	-	-
Cyanide Total	mg/kg	1	10,000	2,500	2,500	50	<	-	-	-	-
Electrical Conductivity (Lab)	μS/cm	1	*	*	*	*	-	-	-	-	-
Calcium/Magnesium Ratio	-	0.2	*	*	*	*	-	-	-	-	-
Fluoride	mg/kg	40	40,000	10,000	10,000	450	180	-	-	-	-
pH (Lab)	-	0.1	2-12.5	*	4-10	4-10	-	-	-	-	-
MAH											
EPAVic	mg/kg	0.2	*	*	*	7	<0.2	-	-	-	-
Styrene	mg/kg	0.5	480	120	120	*	<0.5	-	-	-	-
Particulates											
Organic Matter	%	0.5	*	*	*	*	-	-	-	-	-
PCBs											
PCBs (Sum of total)	mg/kg	0.1	6	50	2	2	<0.1	-	-	-	-
Cyanides											
Cyanide (WAD)	mg/kg	1	*	*	*	*	-	-	-	-	-
Notes	, , ,										

Notes

1 - EPA Victoria, July 2021, EPA Vic IWRG1828.2

mbgl - Meters Below Ground Level

LOR - Limit of Reporting

Shading indicates analyte exceeds the relevant trigger value (highest criterion applied).

< Result is less than the laboratory limit of reporting (LOR)

5/07/2022 Page 7 of 12

^{*} No Relevant Criteria

⁻ Analysis not performed

						Location			Stockpile		
						Field ID	SP01	SP03	SP05	SP07	SP09
						Date	9/06/2022	9/06/2022	9/06/2022	9/06/2022	9/06/2022
						Depth Actrix Tyme	0.1	0.1	0.1	0.1	0.1
					N N	Matrix Type	FILL - Clay	FILL - Clay	FILL - Clay	FILL - Clay	FILL - Clay
				EPA Vic IV	VRG1828.2	1					
Analyte	Unit	LOR	Cat B	Cat C	Cat D	Fill					
TRH									I	I	I
C6-C10 Fraction (F1)	mg/kg	10	*	*	*	*	<10	_	<10	<10	<10
C6-C10 (F1 minus BTEX)	mg/kg	10	*	*	*	*	<10	-	<10	<10	<10
>C10-C16 Fraction (F2)	mg/kg	50	*	*	*	*	<50	-	<50	<50	<50
>C10-C16 Fraction (F2 minus	mg/kg	50	*	*	*	*	<50	-	<50	<50	<50
>C16-C34 Fraction (F3)	mg/kg	100	*	*	*	*	<100	-	<100	<100	<100
>C34-C40 Fraction (F4)	mg/kg	100	*	*	*	*	<100	-	<100	<100	<100
>C10-C40 Fraction (Sum)	mg/kg	50	*	*	*	*	<50	-	<50	<50	<50
Phenois											
3&4-Methylphenol (m&p-cresol)	mg/kg	1	*	*	*	*	<1	-	-	-	-
2,3,5,6-Tetrachlorophenol	mg/kg	0.03	*	*	*	*	< 0.03	-	-	-	-
2,4,5-Trichlorophenol	mg/kg	0.05	64,000	16,000	16,000	*	< 0.05	-	-	-	-
2,4,6-Trichlorophenol	mg/kg	0.05	320	80	80	*	< 0.05	-	-	-	-
2,4-Dichlorophenol	mg/kg	0.03	3,200	800	800	*	< 0.03	-	-	-	-
2,4-Dimethylphenol	mg/kg	0.5	*	*	*	*	<1	-	-	-	-
2,4-Dinitrophenol	mg/kg	5	*	*	*	*	<5	-	-	-	-
2,6-Dichlorophenol	mg/kg	0.03	*	*	*	*	< 0.03	-	-	-	-
2,3,4,5 & 2,3,4,6-Tetrachlorophenol	mg/kg	0.05	*	*	*	*	< 0.05	-	-	-	-
2-Chlorophenol	mg/kg	0.03	4,800	1,200	1,200	*	< 0.03	-	-	-	-
2-Methylphenol	mg/kg	0.5	*	*	*	*	<1	-	-	-	-
2-Nitrophenol	mg/kg	0.5	*	*	*	*	<1	-	-	-	-
4,6-Dinitro-2-methylphenol	mg/kg	5	*	*	*	*	<5	-	-	-	-
4,6-Dinitro-o-cyclohexyl phenol	mg/kg	5	*	*	*	*	<5	-	-	-	-
4-chloro-3-methylphenol	mg/kg	0.03	*	*	*	*	< 0.03	-	-	-	-
4-Nitrophenol	mg/kg	5	*	*	*	*	<5	-	-	-	-
Pentachlorophenol	mg/kg	0.2	*	*	*	*	<0.2	-	-	-	-
Picloram	mg/kg	0.02	*	*	*	*	-	-	-	-	-
Phenol	mg/kg	0.5	*	*	*	*	<1	-	-	-	-
Phenols (halogenated) EPAVic	mg/kg	0.03	*	*	*	1	< 0.03	-	-	-	-
Phenols (non-halogenated) EPAVic	mg/kg	1	2,200	560	560	60	<1	-	-	-	-
Organophosphorous Pesticides											
Azinophos methyl	mg/kg	0.05	*	*	*	*	-	-	-	-	-
Bromophos-ethyl	mg/kg	0.05	*	*	*	*	-	-	-	-	-
Carbophenothion	mg/kg	0.05	*	*	*	*	-	-	-	-	-
Chlorfenvinphos	mg/kg	0.05	*	*	*	*	-	-	-	-	-
Chlorpyrifos	mg/kg	0.05	*	*	*	*	-	-	-	-	-
Chlorpyrifos-methyl	mg/kg	0.05	*	*	*	*	-	-	-	-	-
Diazinon	mg/kg	0.05	*	*	*	*	-	-	-	-	-
Dichlorvos	mg/kg	0.05	*	*	*	*	-	-	-	-	-
Dimethoate	mg/kg	0.05	*	*	*	*	-	-	-	-	-
Ethion	mg/kg	0.05	*	*	*	*	-	-	-	-	-
Fenthion	mg/kg	0.05	*	*	*	*	-	-	-	-	-
Malathion	mg/kg	0.05	*	*	*	*	-	-	-	-	-
Methyl parathion	mg/kg	0.2	*	*	*	*	-	-	-	-	-
Monocrotophos	mg/kg	0.2	*	*	*	*	-	-	-	-	-
Prothiofos	mg/kg	0.05	*	*	*	*	-	-	-	-	-
Pesticides											
Bifenthrin	mg/kg	0.05	*	*	*	*	-	-	-	-	-
Demeton-S-methyl	mg/kg	0.05	*	*	*	*	-	-	-	-	-
Fenamiphos	mg/kg	0.05	*	*	*	*	-	-	-	-	-
Mirex	mg/kg	0.05	*	*	*	*	-	-	-	-	-
Parathion	mg/kg	0.2	*	*	*	*	-	-	-	-	-
Pirimphos-ethyl	mg/kg	0.05	*	*	*	*	-	-	-	-	-
ТРН											
C6-C9 Fraction	mg/kg	10	2,600	650	325	100	<10	-	<10	<10	<10
C10-C14 Fraction	mg/kg	50	*	*	*	*	<50	-	<50	<50	<50
C15-C28 Fraction	mg/kg	100	*	*	*	*	<100	-	<100	<100	<100
C29-C36 Fraction	mg/kg	100	*	*	*	*	<100	-	<100	<100	<100
C10-C36 Fraction (Sum)	mg/kg	50	40,000	10,000	5,000	1,000	<50	-	<50	<50	<50

Notes

1 - EPA Victoria, July 2021, EPA Vic IWRG1828.2

mbgl - Meters Below Ground Level

LOR - Limit of Reporting

Shading indicates analyte exceeds the relevant trigger value (highest criterion applied).

5/07/2022 Page 8 of 12

< Result is less than the laboratory limit of reporting (LOR)

^{*} No Relevant Criteria

⁻ Analysis not performed

					Sa	ample Code	EM2211061019	EM2211061030	EM2211061031	EM2211061033	EM2211061036	EM2211061037	EM2211061039	EM2211061040	EM2211061042	EM2211061043
					30	Location	LW2211001019	EI412211001030	LIWIZZ11001031	LW2211001033		Shed Area	LW2211001039	LW2211001040	EIVI2211001042	LW2211001043
						Field ID	BH07 - 0.1	BH08 - 0.1	BH09 - 0.5	BH09 - 0.1	BH10 - 0.1	BH10 - 0.5	BH11 - 0.1	BH11 - 0.5	BH12 - 0.1	BH12 - 0.5
						Date	9/06/2022	9/06/2022	9/06/2022	9/06/2022	9/06/2022	9/06/2022	9/06/2022	9/06/2022	9/06/2022	9/06/2022
						Depth	0.1	0.1	0.5	0.1	0.1	0.5	0.1	0.5	0.1	0.5
						Matrix Type	FILL - Reworked CLAY	FILL - Clayey SLIT	NAT - CLAY with silt	FILL - Silty CLAY	FILL - Silty CLAY	NAT - CLAY with silt	FILL - Silty CLAY	NAT - CLAY with silt	FILL - Gravel with silt	NAT - CLAY with silt
				EPA Vic IV	VRG1828.2	21										
Analyte	Unit	LOR	Cat B	Cat C	Cat D	Fill										
Acid Sulphate Soils																
pH (CaCl2)	-	0.1	*	*	*	*	8.2	-	8.4	-	-	-	-	-	-	-
Particle Size																
Clay in soils <2um	%	1	*	*	*	*	17	-	-	-	-	-	-	-	-	-
Density	g/cm3	0.01	*	*	*	*	2.69	-	-	-	-	-	-	-	-	-
BTEX Naphthalene (VOC)																_
Benzene	mg/kg	1	*	*	*	*	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Toluene	mg/kg	0.2	16	4	4	1	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Ethylbenzene	mg/kg	0.5	12,800	3,200	3,200	*	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Xylene (m & p)	mg/kg	0.5	4,800	1,200	1,200	*	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Xylene (ο)	mg/kg	0.5	*	*	*	*	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Xylene Total	mg/kg	0.5		_	_	*	<0.5 <0.5	<0.5 <0.5	<0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5
Total BTEX	mg/kg mg/kg	0.5 0.2	9,600	2,400	2,400	*		<0.5	<0.5 <0.2	<0.5	<0.5	 	<0.5	+		<0.5
PAH	mg/kg	0.2					<0.2	\U.Z	\U.Z	NU.2	\U.Z	<0.2	NU.Z	<0.2	<0.2	<0.2
	ma/ka	1	*	*	*	*										
Benzo(b+j+k)fluoranthene Acenaphthene	mg/kg mg/kg	0.5	*	*	*	*	<0.5	<0.5	<0.5	- <12	<0.5	-	<0.5	-	-	-
Acenaphthylene	mg/kg	0.5	*	*	*	*	<0.5	<0.5	<0.5	<1.2	<0.5	-	<0.5	-	-	-
Anthracene	mg/kg	0.5	*	*	*	*	<0.5	<0.5	<0.5	<1.2	<0.5	-	<0.5	-	-	-
Benzo(a)anthracene	mg/kg	0.5	*	*	*	*	<0.5	<0.5	<0.5	<1.2	<0.5	-	<0.5	-	-	-
Benzo(a) pyrene	mg/kg	0.5	160	40	20	1	<0.5	<0.5	<0.5	<12	<0.5	-	<0.5	-	-	-
Benzo(b+j)fluoranthene	mg/kg	0.5	*	*	*	*	<0.5	<0.5	<0.5	<1.2	<0.5		<0.5	-		-
Benzo(g,h,i)perylene	mg/kg	0.5	*	*	*	*	<0.5	<0.5	<0.5	<1.2	<0.5	_	<0.5	_	-	-
Benzo(k)fluoranthene	mg/kg	0.5	*	*	*	*	<0.5	<0.5	<0.5	<1.2	<0.5	_	<0.5	-	-	-
Chrysene	mg/kg	0.5	*	*	*	*	<0.5	<0.5	< 0.5	<1.2	<0.5	_	< 0.5	_		_
Dibenz(a,h)anthracene	mg/kg	0.5	*	*	*	*	<0.5	<0.5	<0.5	<1.2	<0.5	_	<0.5	_	_	_
Fluoranthene	mg/kg	0.5	*	*	*	*	<0.5	<0.5	<0.5	<1.2	<0.5	_	<0.5	-	-	_
Fluorene	mg/kg	0.5	*	*	*	*	<0.5	<0.5	<0.5	<1.2	<0.5	_	<0.5	-	-	-
Indeno(1,2,3-c,d)pyrene	mg/kg	0.5	*	*	*	*	<0.5	<0.5	<0.5	<1.2	<0.5	_	<0.5	-	-	_
Naphthalene	mg/kg	0.5	*	*	*	*	<0.5	<0.5	<0.5	<1.2	<0.5	-	<0.5	-	-	-
Phenanthrene	mg/kg	0.5	*	*	*	*	<0.5	<0.5	<0.5	<1.2	<0.5	_	<0.5	-	-	-
Pyrene	mg/kg	0.5	*	*	*	*	<0.5	<0.5	<0.5	<1.2	<0.5	-	<0.5	-	-	-
Benzo(a)pyrene TEQ calc (Half)	mg/kg	0.5	*	*	*	*	0.6	0.6	0.6	1.4	0.6	-	0.6	-	-	-
Benzo(a)pyrene TEQ (LOR)	mg/kg	0.5	*	*	*	*	1.2	1.2	1.2	2.9	1.2	-	1.2	-	-	-
Benzo(a)pyrene TEQ calc (Zero)	mg/kg	0.5	*	*	*	*	<0.5	< 0.5	<0.5	< 0.5	<0.5	-	< 0.5	-	-	-
PAHs (Sum of total)	mg/kg	0.5	400	100	50	20	<0.5	<0.5	<0.5	< 0.7	<0.5	-	<0.5	-	-	-
PAHs (Vic EPA List)	mg/kg	0.5	400	100	50	20	-	-	-	-	-	-	-	-	-	-
Chlorinated Hydrocarbons																
Chlorinated hydrocarbons EPAVic	mg/kg	0.01	*	*	*	1	-	-	-	-	-	-	-	-	-	-
1,1,1,2-tetrachloroethane	mg/kg	0.01	1,600	400	400	*	-	-	-	-	-	-	-	-	-	-
I,1,1-trichloroethane	mg/kg	0.01	4,800	1,200	1,200	*	-	-	-	-	-	-	-	-	-	-
1,1,2,2-tetrachloroethane	mg/kg	0.02	210	52	52	*	-	-	-	-	-	-	-	-	-	-
,1,2-trichloroethane	mg/kg	0.04	190	48	48	*	-	-	-	-	-	-	-	-	-	-
,1-dichloroethene	mg/kg	0.01	480	120	120	*	-	-	-	-	-	-	-	-	-	-
,2-dichloroethane	mg/kg	0.02	48	12	12	*	-	-	-	-	-	-	-	-	-	-
Carbon tetrachloride	mg/kg	0.01	48	12	12	*	-	-	-	-	-	-	-	-	-	-
Chloroform	mg/kg	0.02	960	240	240	*	-	-	-	-	-	-	-	-	-	-
cis-1,2-dichloroethene	mg/kg	0.01	*	*	*	*	-	-	-	-	-	-	-	-	-	-
Dichloromethane	mg/kg	0.4	64	16	16	*	-	-	-	-	-	-	-	-	-	-
Hexachlorobutadiene	mg/kg	0.02	11	2.8	2.8	*	-	-	-	-	-	-	-	-	-	-
Trichloroethene	mg/kg	0.02	80	20	20	*	-	-	-	-	-	-	-	-	-	-
Tetrachloroethene	mg/kg	0.02	800	200	200	*	-	-	-	-	-	-	-	-	-	-
trans-1,2-dichloroethene	mg/kg	0.02	*	*	*	*	-	-	-	-	-	-	-	-	-	-
Vinyl chloride	mg/kg	0.02	4.8	1.2	1.2	*	-	-	-	-	-	-	-	-	-	-

Notes

1 - EPA Victoria, July 2021, EPA Vic IWRG1828.2

mbgl - Meters Below Ground Level

LOR - Limit of Reporting

Shading indicates analyte exceeds the relevant trigger value (highest criterion applied).

< Result is less than the laboratory limit of reporting (LOR)

* No Relevant Criteria

- Analysis not performed

5/07/2022 Page 9 of 12

Edge Project No.: 20220134
Preliminary Site Investigation
Urban Land Developments

Hopetoun Park Road, Hopetoun Park, VIC, 3340

					Sa	mple Code	EM2211061019	EM2211061030	EM2211061031	EM2211061033	EM2211061036	EM2211061037	EM2211061039	EM2211061040	EM2211061042	EM2211061043
						Location Field ID	BH07 - 0.1	BH08 - 0.1	BH09 - 0.5	BH09 - 0.1	BH10 - 0.1	BH10 - 0.5	BH11 - 0.1	BH11 - 0.5	BH12 - 0.1	BH12 - 0.5
						Date Depth Matrix Type	9/06/2022 0.1 FILL - Reworked CLAY	9/06/2022 0.1 FILL - Clayey SLIT	9/06/2022 0.5 NAT - CLAY with slit	9/06/2022 0.1 FILL - Silty CLAY	9/06/2022 0.1 FILL - Silty CLAY	9/06/2022 0.5 NAT - CLAY with slit	9/06/2022 0.1 FILL - Slity CLAY	9/06/2022 0.5 NAT - CLAY with slit	9/06/2022 0.1 FILL - Gravel with silt	9/06/2022 0.5 NAT - CLAY with silt
				EPA Vic IV	WRG1828.2		FILE - Reworked CLAT	FILE - Clayey SET	NAT - CLAT WILL SIL	FILE - Silty CEAT	FILE - SIRY CLAY	NAT - CLAT WILLISH	PILE - SILLY CLAT	NAT - CLAY WILLI SIIL	FILE - Graver with Sit	NAT - CLAT WITH SHE
Analyte	Unit	LOR	Cat B	Cat C	Cat D	Fill										
Halogenated Benzenes		- 01		*	*	*										
1,2,4-trichlorobenzene	mg/kg	0.01	*				-	-	-	-	-	-	-	-	-	-
1,2-dichlorobenzene	mg/kg	0.02	24,000		6,000	*	-	-	-	-	-	-	-	-	-	-
1,4-dichlorobenzene Chlorobenzene	mg/kg mg/kg	0.02	640 4,800	160	160	*	-	-	-	-	-	-	-	-	-	-
Hexachlorobenzene	mg/kg	0.02	4,800 *	1,200	1,200	*	<0.05	-	-	<0.05	<0.05	-	<0.05	-	-	-
Herbicides	99	0.03					40.03			40.03	10.03		10.03		-	-
2,4,5-Trichlorophenoxy Acetic Acid	mg/kg	0.02	*	*	*	*	< 0.02	_	_	< 0.02	_	_	<0.04	_	_	_
2,4,5-TP (Silvex)	mg/kg	0.02	*	*	*	*	< 0.02	_	-	<0.02	_	_	<0.04	_	_	_
Hedonal	mg/kg	0.02	480	120	120	*	<0.02	-	-	<0.02	_	-	<0.04	-	_	-
2,4-Dichlorprop	mg/kg	0.02	*	*	*	*	<0.02	-	-	< 0.02	-	-	< 0.04	-	-	-
(2,4-DB)	mg/kg	0.02	*	*	*	*	<0.02	-	-	< 0.02	-	-	< 0.04	-	-	-
4-Chlorophenoxy acetic acid	mg/kg	0.02	*	*	*	*	<0.02	-	-	< 0.02	-	-	< 0.04	-	-	-
Atrazine	mg/kg	0.05	*	*	*	*	< 0.05	-	-	< 0.05	-	-	< 0.05	-	-	-
Clopyralid	mg/kg	0.02	*	*	*	*	< 0.02	-	-	< 0.02	-	-	< 0.04	-	-	-
Dicamba	mg/kg	0.02	*	*	*	*	<0.02	-	-	< 0.02	-	-	< 0.04	-	-	-
Dinoseb	mg/kg	5	*	*	*	*	-	-	-	-	-	-	-	-	-	-
Fluroxypyr	mg/kg	0.02	*	*	*	*	<0.02	-	-	<0.02	-	-	< 0.04	-	-	-
2-Methyl-4-chlorophenoxyacetic acid	mg/kg	0.02	*	*	*	*	<0.02	-	-	< 0.02	-	-	< 0.04	-	-	-
Acid	mg/kg	0.02	*	*	*	*	<0.02	-	-	<0.02	-	-	<0.04	-	-	-
Mecoprop	mg/kg	0.02	*	*	*	*	<0.02	-	-	<0.02	-	-	< 0.04	-	-	-
Triclopyr	mg/kg	0.02	*	*	*	*	<0.02	-	-	< 0.02	-	-	< 0.04	-	-	-
Metals																
Arsenic	mg/kg	5	2,000		500	20	<5	<5	8	<5	6	<5	<5	<5	<5	5
Barium	mg/kg	10	25,000	-	6,250	*	110	-	-	30	-	-	70	-	-	-
Beryllium	mg/kg	1	400	100	100	*	<1	-	-	<1	-	-	<1	-	-	-
Boron Cadmium	mg/kg	50	60,000		15,000	*	<50	-	-	<50	-	-	<50	-	-	-
	mg/kg	1	400	100	100	3	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chromium (hexavalent) Chromium (III+VI)	mg/kg	0.5	2,000	500	500	1 *	<0.5	-	-	<0.5		-	<0.5	-		
Cobalt	mg/kg	2	*	*	*	*	17	16	31	10	11	18	12	20	14	25
Copper	mg/kg	2 5	20.000		_		19	9	-	9	- 12	-	4 11	7	- 15	10
	mg/kg %	5	*	5,000	5,000	100	19 2.58	9	16 3.91		12	8	11		15	10
Iron Lead		5	6,000		1,500	300	2.58	40	3.91	32	52	7	141	- 6	16	10
Manganese	mg/kg mg/kg	5	6,000	1,500	1,500	300 *	691	40	12	91	52	-	109	-	Ö	IU IU
Mercury	mg/kg mg/kg	0.1	300	75	75	1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	<0.1	<0.1	<0.1
Molybdenum	mg/kg mg/kg	2	4,000	1,000	1,000	40	- \0.1	NU.1		- 50.1	<u.1< td=""><td></td><td>- 0.1</td><td></td><td></td><td></td></u.1<>		- 0.1			
Nickel	mg/kg	2	12.000	3,000	3.000	60	79	14	45	6	7	22	8	15	66	23
Selenium	mg/kg	5	40,000		10,000	10		-	- 40	<5	-		<5	-	-	- 23
Silver	mg/kg	2	720	180	180	10	-	-	-	-	-	-	-	-	-	-
Tin	ma/ka	<u> </u>	*	*	*	50	-	-	-	 	<u> </u>	<u> </u>	+	-	<u> </u>	-

Notes

1 - EPA Victoria, July 2021, EPA Vic IWRG1828.2

mbgl - Meters Below Ground Level

LOR - Limit of Reporting

Shading indicates analyte exceeds the relevant trigger value (highest criterion applied).

< Result is less than the laboratory limit of reporting (LOR)

* No Relevant Criteria

- Analysis not performed

5/07/2022 Page 10 of 12

					Sa	ample Code	EM2211061019	EM2211061030	EM2211061031	EM2211061033	EM2211061036	EM2211061037	EM2211061039	EM2211061040	EM2211061042	EM2211061043
						Location						hed Area				
						Field ID	BH07 - 0.1	BH08 - 0.1	BH09 - 0.5	BH09 - 0.1	BH10 - 0.1	BH10 - 0.5	BH11 - 0.1	BH11 - 0.5	BH12 - 0.1	BH12 - 0.5
						Date	9/06/2022	9/06/2022	9/06/2022	9/06/2022	9/06/2022	9/06/2022	9/06/2022	9/06/2022	9/06/2022	9/06/2022
						Depth Matrix Type	0.1 FILL - Reworked CLAY	0.1 FILL - Clayey SLIT	0.5 NAT - CLAY with slit	0.1 FILL - Silty CLAY	0.1 FILL - Silty CLAY	0.5 NAT - CLAY with silt	0.1 FILL - Silty CLAY	0.5 NAT - CLAY with silt	0.1 FILL - Gravel with slit	0.5 NAT - CLAY with slit
							TILL - NewOrked CLAY	TILL - Glayey SLIT	TVAT - CEAT WILLT SILL	TILL - Silty CLAT	FILE - SHITY CLAT	TVAT - CEAT WITH SIIT	TILL - SILY CLAT	TVAT - CEAT WILLI SIIL	FILE - Oraver with Silt	NAT - CLAT WILL SILL
				EPA Vic I	WRG1828.2	21										
Analyte	Unit	LOR	Cat B	Cat C	Cat D	Fill	İ									
Analyte	Offic	LOK	Cat B	Car C	Carb	1 111										
Organic																
Total Organic Carbon	%		*	*	*	*	0.6	-	0.5	-	-	-	-	-	-	-
Organochlorine Pesticides					_											
Organochlorine pesticides EPAVic	mg/kg	0.03	*	*	*	1	-	-	-	-	-	-	-	-	-	-
4,4-DDE	mg/kg	0.05	*	*	*	*	<0.05	-	-	<0.05	<0.05	-	<0.05	-	-	-
a-BHC	mg/kg	0.03	*	*	*	*	<0.05	-	-	<0.05	<0.05	-	<0.05	-	-	-
Aldrin	mg/kg	0.03				*	<0.05	-	-	<0.05	<0.05	-	<0.05	-	-	-
Aldrin + Dieldrin	mg/kg	0.05	4.8	1.2	1.2	*	<0.05	-	-	<0.05	0.56	-	<0.05	-	-	-
b-BHC	mg/kg	0.03		4	4	*	<0.05	-	-	<0.05	<0.05	-	<0.05	-	-	-
Chlordane Chlordane (cis)	mg/kg mg/kg	0.03	16 *	*	*	*	<0.05	-	-	<0.05	<0.05 <0.05	-	<0.05	-	-	-
Chlordane (trans)	mg/kg mg/kg	0.03	*	*	*	*	<0.05	-		<0.05	<0.05		<0.05	-	-	-
d-BHC	mg/kg mg/kg	0.03	*	*	*	*	<0.05	-	-	<0.05	<0.05	-	<0.05	-	-	-
DDD	mg/kg mg/kg	0.03	*	*	*	*	<0.05	-	-	<0.05	<0.05	-	<0.05	-	-	-
DDT	mg/kg mg/kg	0.05	*	*	*	*	<0.05	-	-	<0.05	<0.05	-	<0.05	-	-	-
DDT+DDE+DDD	mg/kg	0.05	50	50	50	*	<0.2	-	-	<0.2	<0.2	-	<0.2	-	-	-
Dieldrin	mg/kg	0.03	*	*	*	*	<0.05	-	-	<0.05	0.56	-	<0.05	-		-
Endosulfan	mg/kg	0.05	*	*	*	*	<0.05	-		<0.05	<0.05	-	<0.05	-		
Endosulfan I	mg/kg	0.03	*	*	*	*	<0.05	-	_	<0.05	<0.05	-	<0.05	_		_
Endosulfan II	mg/kg	0.03	*	*	*	*	<0.05	_	_	<0.05	< 0.05	-	<0.05	_	_	_
Endosulfan sulphate	mg/kg	0.03	*	*	*	*	<0.05		_	<0.05	< 0.05	_	<0.05	_	_	_
Endrin	mg/kg	0.03	*	*	*	*	<0.05	_	_	<0.05	< 0.05	_	<0.05	_	_	_
Endrin aldehyde	mg/kg	0.03	*	*	*	*	<0.05	-	_	<0.05	< 0.05	_	<0.05	_	_	_
Endrin ketone	mg/kg	0.05	*	*	*	*	<0.05	-	_	< 0.05	< 0.05	-	< 0.05	_	_	_
g-BHC (Lindane)	mg/kg	0.03	*	*	*	*	<0.05	-	-	<0.05	< 0.05	-	<0.05	-	-	-
Heptachlor	mg/kg	0.03	4.8	1.2	1.2	*	< 0.05	-	-	< 0.05	< 0.05	-	< 0.05	-	-	-
Heptachlor epoxide	mg/kg	0.03	*	*	*	*	< 0.05	-	-	< 0.05	< 0.05	-	< 0.05	-	-	-
Methoxychlor	mg/kg	0.03	*	*	*	*	<0.2	-	-	<0.2	<0.2	-	<0.2	-	-	-
Toxaphene	mg/kg	2	*	*	*	*	<2	-	-	<2	-	-	<2	-	-	-
Inorganics								İ								
Exchangeable Calcium Percent	%	0.2	*	*	*	*	38.0	-	13.2	-	-	-	-	-	-	-
Exchangeable Magnesium Percent	%	0.2	*	*	*	*	35.7	-	45.6	-	-	-	-	-	-	-
Exchangeable Potassium Percent	%	0.2	*	*	*	*	8.1	-	7.3	-	-	-	-	-	-	-
Exchangeable Sodium Percent	%	0.2	*	*	*	*	18.2	-	33.9	-	-	-	-	-	-	-
Magnesium/Potassium Ratio	-	0.2	*	*	*	*	4.4	-	6.3	-	-	-	-	-	-	-
Moisture Content	%	1	*	*	*	*	10.9	8.2	13.9	2.6	3.2	20.8	4.8	21.9	1.8	16.9
Exchangeable Calcium	meq/100g	0.2	*	*	*	*	4.7	-	3.9	-	-	-	-	-	-	-
Exchangeable Magnesium	meq/100g	0.2	*	*	*	*	4.4	-	13.4	-	-	-	-	-	-	-
Exchangeable Potassium	meq/100g	0.2	*	*	*	*	1.0	-	2.1	-	-	-	-	-	-	-
Exchangeable Sodium	meq/100g	0.2	*	*	*	*	2.2	-	10.0	-	-	-	-	-	-	-
Cation Exchange Capacity	meq/100g	0.2	*	*	*	*	12.4	-	29.5	-	-	-	-	-	-	-
Cyanide Total	mg/kg	1	10,000	-			-	-	-	-	-	-	-	-	-	-
Electrical Conductivity (Lab)	μS/cm	1	*	*	*	*	615	-	1,560	-	-	-	-	-	-	-
Calcium/Magnesium Ratio	-	0.2	*	*	*	*	1.1	-	0.3	-	-	-	-	-	-	-
Fluoride	mg/kg	40	40,000	10,000		450	-	-	- 0.2	-	-	-	-	-	-	-
pH (Lab)	-	0.1	2-12.5		4-10	4-10	9.0	-	9.3	-	-	-	-	-	-	-
MAH								-						-		
EPAVic Styrene	mg/kg mg/kg	0.2	480	120	120	7 *	-	-	-	-	-	-	-	-	-	-
	mg/kg	0.5	480	120	120		-	-	-	-	-	-	-	-	-	-
Particulates Organic Matter	%	0.5	*	*	*	*	1.0	_	0.9	_	_	_	_	_	_	_
PCBs	70	0.5					1.0	 	0.9	 	-	-	-	-	-	-
PCBs (Sum of total)	mg/kg	0.1	6	50	2	2	<0.1	_	_	<0.1	_	_	<0.1	_	_	
Cyanides	9,9	V.1	0	30			NU.1	-	-	70.1	-	-	×0.1	-	-	-
Cyanides Cyanide (WAD)	mg/kg	1	*	*	*	*	<1	-	_	<1	-	-	<1	-	_	_
Notes	33	· · ·					1	1	1	1		I .	- 1	1	1	

Notes

1 - EPA Victoria, July 2021, EPA Vic IWRG1828.2

mbgl - Meters Below Ground Level

LOR - Limit of Reporting

Shading indicates analyte exceeds the relevant trigger value (highest criterion applied).

Result is less than the laboratory limit of reporting (LOR)

* No Relevant Criteria

- Analysis not performed

5/07/2022 Page 11 of 12

ROUP					Sa	ample Code	EM2211061019	EM2211061030	EM2211061031	EM2211061033	EM2211061036	EM2211061037	EM2211061039	EM2211061040	EM2211061042	EM2211061043
311						Location						hed Area				
						Field ID Date	BH07 - 0.1 9/06/2022	BH08 - 0.1 9/06/2022	BH09 - 0.5 9/06/2022	BH09 - 0.1 9/06/2022	BH10 - 0.1 9/06/2022	BH10 - 0.5 9/06/2022	BH11 - 0.1 9/06/2022	BH11 - 0.5 9/06/2022	BH12 - 0.1 9/06/2022	BH12 - 0.5 9/06/2022
						Depth	0.1	0.1	0.5	0.1	0.1	0.5	0.1	0.5	0.1	0.5
						Matrix Type	FILL - Reworked CLAY	FILL - Clayey SLIT	NAT - CLAY with silt	FILL - Silty CLAY	FILL - Silty CLAY	NAT - CLAY with silt	FILL - Silty CLAY	NAT - CLAY with silt	FILL - Gravel with silt	NAT - CLAY with silt
				EPA Vic I	WRG1828.2	21										
Analyte	Unit	LOR	Cat B	Cat C	Cat D	Fill										
		20.1	ourb	00.0	00.5			1	1	1	ı	I	1			I
TRH C6-C10 Fraction (F1)	mg/kg	10	*	*	*	*	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
C6-C10 (F1 minus BTEX)	mg/kg	10	*	*	*	*	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
>C10-C16 Fraction (F2)	mg/kg	50	*	*	*	*	<50	<50	<50	420	130	<50	<50	<50	<50	<50
>C10-C16 Fraction (F2 minus	mg/kg	50	*	*	*	*	<50	<50	<50	420	130	<50	<50	<50	<50	<50
>C16-C34 Fraction (F3)	mg/kg	100	*	*	*	*	<100	<100	<100	2,800	3,320	<100	170	<100	<100	<100
>C34-C40 Fraction (F4)	mg/kg	100	*	*	*	*	<100	<100	<100	320	830	<100	<100	<100	<100	<100
>C10-C40 Fraction (Sum)	mg/kg	50	*	*	*	*	<50	<50	<50	3,540	4,280	<50	170	<50	<50	<50
Phenols 3&4-Methylphenol (m&p-cresol)	mg/kg	1	*	*	*	*	4		4				- 4		- 1	
2,3,5,6-Tetrachlorophenol	mg/kg	0.03	*	*	*	*	-	-	<u> </u>	- ~2	-	-	<u> </u>	-	<u> </u>	-
2,4,5-Trichlorophenol	mg/kg	0.03	64,000	16,000	16,000	*	<0.5	-	<0.5	<1,2	-	-	<0.5	-	<0.5	-
2,4,6-Trichlorophenol	mg/kg	0.05	320	80	80	*	<0.5	-	<0.5	<1.2	-	-	<0.5	-	<0.5	-
2,4-Dichlorophenol	mg/kg	0.03	3,200	800	800	*	<0.5	_	<0.5	<1.2	-	_	<0.5	_	<0.5	-
2,4-Dimethylphenol	mg/kg	0.5	*	*	*	*	<0.5	-	<0.5	<1.2	-	-	<0.5	-	<0.5	-
2,4-Dinitrophenol	mg/kg	5	*	*	*	*	-	-	-	-	-	-	-	-	-	-
2,6-Dichlorophenol	mg/kg	0.03	*	*	*	*	<0.5	-	<0.5	<1.2	-	-	<0.5	-	<0.5	-
2,3,4,5 & 2,3,4,6-Tetrachlorophenol	mg/kg	0.05	*	*	*	*	-	-	-	-	-	-	-	-	-	-
2-Chlorophenol	mg/kg	0.03	4,800	1,200	1,200	*	<0.5	-	<0.5	<1.2	-	-	<0.5	-	<0.5	-
2-Methylphenol	mg/kg	0.5	*	*	*	*	<0.5	-	<0.5	<1.2	-	-	<0.5	-	<0.5	-
2-Nitrophenol	mg/kg	0.5	*	*	*	*	<0.5	-	<0.5	<1.2	-	-	<0.5	-	<0.5	-
4,6-Dinitro-2-methylphenol	mg/kg	5	*	*	*	*	-	-	-	-	-	-	-	-	-	-
4,6-Dinitro-o-cyclohexyl phenol	mg/kg	5	*	*	*	*	-	-	-	-	-	-	-	-	-	-
4-chloro-3-methylphenol	mg/kg	0.03	*	*	*	*	<0.5	-	<0.5	<1.2	-	-	<0.5	-	<0.5	-
4-Nitrophenol Pentachlorophenol	mg/kg mg/kg	5 0.2	*	*	*	*	- <2	-	-	-	-	-	<>	-	-	-
Picloram	mg/kg	0.02	*	*	*	*	<0.02	-	-	<0.02	-	-	<0.04	-		-
Phenol	mg/kg	0.5	*	*	*	*	<0.5	_	<0.5	<1.2	_	-	<0.5	-	<0.5	-
Phenols (halogenated) EPAVic	mg/kg	0.03	*	*	*	1	-	_	-	-	-	_	-	_	-	-
Phenols (non-halogenated) EPAVic	mg/kg	1	2,200	560	560	60	-	-	-	-	-	-	-	-	-	-
Organophosphorous Pesticides																
Azinophos methyl	mg/kg	0.05	*	*	*	*	<0.05	-	-	< 0.05	< 0.05	-	< 0.05	-	-	-
Bromophos-ethyl	mg/kg	0.05	*	*	*	*	< 0.05	-	-	< 0.05	< 0.05	-	< 0.05	-	-	-
Carbophenothion	mg/kg	0.05	*	*	*	*	<0.05	-	-	< 0.05	< 0.05	-	< 0.05	-	-	-
Chlorfenvinphos	mg/kg	0.05	*	*	*	*	<0.05	-	-	< 0.05	< 0.05	-	< 0.05	-	-	-
Chlorpyrifos	mg/kg	0.05	*	*	*	*	<0.05	-	-	< 0.05	<0.05	-	< 0.05	-	-	-
Chlorpyrifos-methyl	mg/kg	0.05	*	*	*	*	<0.05	-	-	< 0.05	<0.05	-	< 0.05	-	-	-
Diazinon	mg/kg	0.05	*	*	*	*	<0.05	-	-	<0.05	<0.05	-	<0.05	-	-	-
Dichlorvos Dimethoate	mg/kg	0.05 0.05	*	*	*	*	<0.05 <0.05	-	-	<0.05 <0.05	<0.05 <0.05	-	<0.05 <0.05	-	-	-
Ethion	mg/kg mg/kg	0.05	*	*	*	*	<0.05	-	-	<0.05	<0.05	-	<0.05	-	-	-
Fenthion	mg/kg	0.05	*	*	*	*	<0.05	-	-	<0.05	<0.05	-	<0.05	-	-	-
Malathion	mg/kg	0.05	*	*	*	*	<0.05	-	-	<0.05	<0.05	-	<0.05	-	-	-
Methyl parathion	mg/kg	0.2	*	*	*	*	<0.2	_	_	<0.2	<0.2	_	<0.2	_	-	-
Monocrotophos	mg/kg	0.2	*	*	*	*	<0.2	-	-	<0.2	<0.2	-	<0.2	-	-	-
Prothiofos	mg/kg	0.05	*	*	*	*	<0.05	-	-	< 0.05	< 0.05	-	< 0.05	-	-	-
Pesticides																
Bifenthrin	mg/kg	0.05	*	*	*	*	<0.05	-	-	<0.05	-	-	< 0.05	-	-	-
Demeton-S-methyl	mg/kg	0.05	*	*	*	*	<0.05	-	-	< 0.05	<0.05	-	< 0.05	-	-	-
Fenamiphos	mg/kg	0.05	*	*	*	*	<0.05	-	-	< 0.05	< 0.05	-	< 0.05	-	-	-
Mirex	mg/kg	0.05	*	*	*	*	<0.05	-	-	< 0.05	-	-	< 0.05	-	-	-
Parathion	mg/kg	0.2	*	*	*	*	<0.2	-	-	<0.2	<0.2	-	<0.2	-	-	-
Pirimphos-ethyl	mg/kg	0.05	*	*	*	*	<0.05	-	-	<0.05	< 0.05	-	<0.05	-	-	-
TPH C6-C9 Fraction	, P	40	2.000	050	205	400	40	-40	40	40	-40	-40		40	-40	-40
C10-C14 Fraction	mg/kg	10	2,600	650	325	100	<10 <50	<10 <50	<10 <50	<10	<10 <50	<10 <50	<10 <50	<10 <50	<10 <50	<10 <50
C15-C28 Fraction	mg/kg mg/kg	50 100	*	*	*	*	<50	<50 <100	<50 <100	130 2,000	2,050	<50 <100	<50 <100	<50	<50	<50
C29-C36 Fraction	mg/kg	100	*	*	*	*	<100	<100	<100	1,160	1,570	<100	110	<100	<100	<100
C10-C36 Fraction (Sum)	mg/kg	50	40.000	10,000	5,000	1,000	<50	<50	<50	3,290	3,620	<50	110	<50	<50	<50
Notes	3,3		10,000	10,000	3,000	1,000	-50	-50	-50	3,230	3,020	1,50	1 110	-50	-50	-50

Notes

1 - EPA Victoria, July 2021, EPA Vic IWRG1828.2

mbgl - Meters Below Ground Level

LOR - Limit of Reporting

Shading indicates analyte exceeds the relevant trigger value (highest criterion applied).

< Result is less than the laboratory limit of reporting (LOR)

* No Relevant Criteria

- Analysis not performed

5/07/2022 Page 12 of 12

		Sample Code	EM2211061019	EM2211061045		EM2211061019	31939-1	
		Field ID Date	BH07 - 0.1 44721	FD01 44721	-	BH07 - 0.1 44721	FS01 44721	-
		Depth (mbgl)	0.1	0.1		0.1	0.1	
		Matrix Type	FILL - Reworked CLAY	FILL - Reworked CLAY		FILL - Reworked CLAY	FILL - Reworked CLAY	
Analyte	Unit	LOR						
Acid Sulphate Soils pH (CaCl2)	-	0.1	8.2	-	-	8.2	-	-
Particle Size Clay in soils <2um	%	1	17	-	_	17	-	-
Density	g/cm3	0.01	2.69		-	2.69	-	-
Particulates Organic Matter	%	0.5	1.0	-	-	1.0	-	-
BTEX Naphthalene (VOC)	mg/kg	1	<	_	-	<1	_	-
Benzene	mg/kg	0.2	<0.2	-	-	<0.2	-	-
Toluene Ethylbenzene	mg/kg mg/kg	0.5 0.5	<0.5 <0.5	-	-	<0.5 <0.5	-	-
Xylene (m & p) Xylene (o)	mg/kg mg/kg	0.5 0.5	<0.5 <0.5	-	-	<0.5 <0.5	-	-
Xylene Total	mg/kg	0.5	<0.5		-	<0.5	-	-
Total BTEX Cyanides	mg/kg	0.2	<0.2	-	-	<0.2	-	-
Cyanide (WAD) TRH	mg/kg	1	<1	-	-	<1	-	-
C6-C10 Fraction (F1)	mg/kg	10	<10	-	-	<10	-	-
C6-C10 (F1 minus BTEX) >C10-C16 Fraction (F2)	mg/kg mg/kg	10 50	<10 <50	-	-	<10 <50	-	-
>C10-C16 Fraction (F2 minus Naphthalene)	mg/kg	50	<50	_		<50	_	
>C16-C34 Fraction (F3)	mg/kg	100	<100	-	-	<100	-	-
>C34-C40 Fraction (F4) >C10-C40 Fraction (Sum)	mg/kg mg/kg	100 50	<100 <50	-	-	<100 <50	-	-
Phenols 3&4-Methylphenol (m&p-cresol)	malka	1	◁			<1		
2,4,5-Trichlorophenol	mg/kg mg/kg	0.5	<0.5	-	-	<0.5	-	-
2,4,6-Trichlorophenol 2,4-Dichlorophenol	mg/kg mg/kg	0.5 0.5	<0.5 <0.5	-	-	<0.5 <0.5	-	-
2,4-Dimethylphenol	mg/kg	0.5	<0.5		-	<0.5	-	-
2,6-Dichlorophenol 2-Chlorophenol	mg/kg mg/kg	0.5 0.5	<0.5 <0.5	-	-	<0.5 <0.5	-	-
2-Methylphenol 2-Nitrophenol	mg/kg mg/kg	0.5 0.5	<0.5 <0.5	-	-	<0.5 <0.5	-	-
4-chloro-3-methylphenol	mg/kg	0.5	<0.5	-	-	<0.5	-	-
Pentachlorophenol Picloram	mg/kg mg/kg	0.02	<2 <0.02	-	-	<2 <0.02	-	-
Phenol Halogenated Benzenes	mg/kg	0.5	<0.5	-	-	<0.5	-	-
Hexachlorobenzene Herbicides	mg/kg	0.05	<0.05	-	-	<0.05	-	-
2,4,5-Trichlorophenoxy Acetic Acid	mg/kg	0.02	<0.02		-	<0.02		-
2,4,5-TP (Silvex) Hedonal	mg/kg mg/kg	0.02	<0.02 <0.02	-	-	<0.02 <0.02	-	-
2,4-Dichlorprop 4-(2,4-Dichlorophenoxy)butyric Acid	mg/kg	0.02	<0.02	-	-	<0.02	-	-
(2,4-DB)	mg/kg	0.02	<0.02	-	-	<0.02	-	-
4-Chlorophenoxy acetic acid Atrazine	mg/kg mg/kg	0.02 0.05	<0.02 <0.05	-	-	<0.02 <0.05	-	-
Clopyralid Dicamba	mg/kg mg/kg	0.02	<0.02 <0.02	-	-	<0.02 <0.02	-	-
Fluroxypyr	mg/kg	0.02	<0.02	-	-	<0.02	-	-
2-Methyl-4-chlorophenoxyacetic acid	mg/kg	0.02	<0.02	-	-	<0.02	-	-
2-Methyl-4-Chlorophenoxy Butanoic Acid	mg/kg	0.02	<0.02	-	-	<0.02	-	-
Mecoprop Triclopyr	mg/kg mg/kg	0.02 0.02	<0.02 <0.02	-	-	<0.02 <0.02	-	-
Inorganics								
Exchangeable Calcium Percent Exchangeable Magnesium Percent	% %	0.2 0.2	38.0 35.7	-	-	38.0 35.7	-	-
Exchangeable Potassium Percent Exchangeable Sodium Percent	% %	0.2	8.1 18.2	-	-	8.1 18.2	-	-
Magnesium/Potassium Ratio	-	0.2	4.4		-	4.4	-	-
Moisture Content Exchangeable Calcium	% meq/100g	0.1 0.2	10.9 4.7	6.5 -	51 -	10.9 4.7	7.6 -	36 -
Exchangeable Magnesium Exchangeable Potassium	meq/100g meq/100g	0.2 0.2	4.4 1.0	-	-	4.4 1.0	-	-
Exchangeable Sodium	meq/100g	0.2	2.2	-	-	2.2	-	-
Cation Exchange Capacity Electrical Conductivity (Lab)	meq/100g µS/cm	0.2	12.4 615	-	-	12.4 615	-	-
Calcium/Magnesium Ratio pH (Lab)	-	0.2 0.1	1.1 9.0	-	-	1.1 9.0	-	-
Metals	mallea			\U	0		-4	0
Arsenic Barium	mg/kg mg/kg	4 1	<5 110	<5 80	32	<5 110	<4 40	93
Beryllium Boron	mg/kg mg/kg	1 3	<1 <50	<1 <50	0	<1 <50	<1 7	0
Cadmium	mg/kg	0.4	<1	<	0	<1	<0.4	0
Chromium (hexavalent) Chromium (III+VI)	mg/kg mg/kg	0.5 1	<0.5 17	23	30	<0.5 17	17	- 0
Cobalt	mg/kg	1	19	18	5	19	18	5
Copper Iron	mg/kg %		19 2.58	16 -	17	19 2.58	19	-
Lead Manganese	mg/kg mg/kg	1	8 691	20 340	86 68	8 691	9 340	12 68
Mercury	mg/kg	0.1	<0.1	<0.1	0	<0.1	<0.1	0
Nickel Selenium	mg/kg mg/kg	1 2	79 <5	69 <5	14 0	79 <5	68 <2	15 0
Vanadium Zinc	mg/kg mg/kg	1	16 52	33 81	69	16 52	22 48	32 8
Notes LOR - Limit of Reporting		· · · ·	Ü2	31			, 10	

LOR - Limit of Reporting
RPD - Relative Percentage Difference
<## Result is less than the LOR

Page 1 of 2 5/07/2022

⁻ Analysis not performed Grey shading indicates RPD exceedance (>50%)

^{*}RPDs have only been considered where a concentration is greater than 1 times the EQL.

**Elevated RPDs are highlighted as per QAQC Profile settings (Acceptable RPDs for each EQL multiplier range are: 50 (1 - 10 x EQL); 50 (10 - 30 x EQL); 50 (> 30 x EQL))

***Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any methods in the row header relate to those used in the primary laboratory

	Sample Code EM2211061019 EM2211061045 EM2211061019 319				31939-1			
		Field ID	BH07 - 0.1	FD01	+	BH07 - 0.1	FS01	1
		Date	44721	44721		44721	44721]
		Depth (mbgl) Matrix Type	0.1 FILL - Reworked CLAY	0.1 FILL - Reworked CLAY	-	0.1 FILL - Reworked CLAY	0.1 FILL - Reworked CLAY	
Analyte	Unit	LOR						
Acid Sulphate Soils								
pH (CaCl2) Organic	-	0.1	8.2	-	-	8.2	-	-
Total Organic Carbon Organochlorine Pesticides	%		0.6	-	-	0.6	-	-
4,4-DDE	mg/kg	0.05	<0.05	-	-	<0.05	-	-
a-BHC	mg/kg	0.05	<0.05	-	-	<0.05	-	-
Aldrin	mg/kg	0.05	<0.05		-	<0.05	-	-
Aldrin + Dieldrin b-BHC	mg/kg	0.05	<0.05	-	-	<0.05	-	-
Chlordane (cis)	mg/kg mg/kg	0.05 0.05	<0.05 <0.05	-	-	<0.05 <0.05	-	-
Chlordane (trans)	mg/kg	0.05	<0.05			<0.05	-	_
d-BHC	mg/kg	0.05	<0.05	-	-	<0.05	-	-
DDD	mg/kg	0.05	<0.05	-	-	<0.05	-	-
DDT	mg/kg	0.2	<0.2	-	-	<0.2	-	-
DDT+DDE+DDD	mg/kg	0.05	<0.05	-	-	<0.05	-	-
Dieldrin Endosulfan	mg/kg	0.05	<0.05	-	-	<0.05	-	-
Endosulfan I	mg/kg mg/kg	0.05 0.05	<0.05 <0.05	-	-	<0.05 <0.05	-	-
Endosulfan II	mg/kg	0.05	<0.05	-	-	<0.05	-	-
Endosulfan sulphate	mg/kg	0.05	<0.05	-	-	<0.05	-	-
Endrin	mg/kg	0.05	<0.05		-	<0.05	-	-
Endrin aldehyde	mg/kg	0.05	<0.05	-	-	<0.05	-	-
Endrin ketone	mg/kg	0.05	<0.05		-	<0.05	-	-
g-BHC (Lindane)	mg/kg	0.05	<0.05	-	-	<0.05	-	-
Heptachlor Heptachlor epoxide	mg/kg mg/kg	0.05 0.05	<0.05 <0.05	-	-	<0.05 <0.05	-	-
Methoxychlor	mg/kg	0.05	<0.05		-	<0.05	-	-
Toxaphene	mg/kg	2	<2	-	-	<2	-	-
Organophosphorous Pesticides		1						
Azinophos methyl	mg/kg	0.05	<0.05	-	-	<0.05	-	-
Bromophos-ethyl	mg/kg	0.05	<0.05	-	-	<0.05	-	-
Carbophenothion	mg/kg	0.05	<0.05	-	-	<0.05	-	-
Chlorfenvinphos	mg/kg	0.05	<0.05	-	-	<0.05	-	-
Chlorpyrifos Chlorpyrifos-methyl	mg/kg	0.05 0.05	<0.05 <0.05	-	-	<0.05 <0.05	-	-
Diazinon	mg/kg mg/kg	0.05	<0.05	-	-	<0.05	-	
Dichlorvos	mg/kg	0.05	<0.05	-	-	<0.05	-	-
Dimethoate	mg/kg	0.05	<0.05	-	-	<0.05	-	-
Ethion	mg/kg	0.05	<0.05	-	-	<0.05	-	-
Fenthion	mg/kg	0.05	<0.05	-	-	<0.05	-	-
Malathion	mg/kg	0.05	<0.05	-	-	<0.05	-	-
Methyl parathion Monocrotophos	mg/kg mg/kg	0.2	<0.2 <0.2	-	-	<0.2 <0.2	-	-
Prothiofos	mg/kg	0.05	<0.05	-	-	<0.05	-	-
PAH		0.00	10.00			10.00		
Acenaphthene	mg/kg	0.5	<0.5	-	-	<0.5	-	-
Acenaphthylene	mg/kg	0.5	<0.5	-	-	<0.5	-	-
Anthracene	mg/kg	0.5	<0.5	-	-	<0.5	-	-
Benzo(a)anthracene	mg/kg	0.5	<0.5	-	-	<0.5	-	-
Benzo(a) pyrene Benzo(b+j)fluoranthene	mg/kg	0.5 0.5	<0.5 <0.5	-	-	<0.5 <0.5	-	-
Benzo(g,h,i)perylene	mg/kg mg/kg	0.5	<0.5	-	-	<0.5	-	-
Benzo(k)fluoranthene	mg/kg	0.5	<0.5	-	-	<0.5	-	-
Chrysene	mg/kg	0.5	<0.5	-	-	<0.5	-	-
Dibenz(a,h)anthracene	mg/kg	0.5	<0.5		-	<0.5	-	-
Fluoranthene	mg/kg	0.5	<0.5	-	-	<0.5	-	-
Fluorene	mg/kg	0.5 0.5	<0.5 <0.5	-	-	<0.5 <0.5	-	-
Indeno(1,2,3-c,d)pyrene Naphthalene	mg/kg mg/kg	0.5	<0.5 <0.5	-	-	<0.5 <0.5	-	-
Phenanthrene	mg/kg	0.5	<0.5	-	-	<0.5	-	-
Pyrene	mg/kg	0.5	<0.5	-	-	<0.5	-	-
Benzo(a)pyrene TEQ calc (Half)	mg/kg	0.5	0.6	-	-	0.6	-	-
Benzo(a)pyrene TEQ (LOR)	mg/kg	0.5	1.2	-	-	1.2	-	-
Benzo(a)pyrene TEQ calc (Zero)	mg/kg	0.5	<0.5	-	-	<0.5	-	-
PAHs (Sum of total) PCBs	mg/kg	0.5	<0.5	-	-	<0.5	-	-
PCBs (Sum of total)	mg/kg	0.1	<0.1	-	-	<0.1	-	-
Pesticides Bifenthrin	ma/ka	0.05	<0.05		1	<0.05		+
Bitenthrin Demeton-S-methyl	mg/kg mg/kg	0.05	<0.05	-	-	<0.05 <0.05	-	-
Fenamiphos	mg/kg	0.05	<0.05	-	-	<0.05	-	-
Mirex	mg/kg	0.05	<0.05		-	<0.05	-	-
Parathion	mg/kg	0.2	<0.2	-	-	<0.2	-	-
Pirimphos-ethyl	mg/kg	0.05	<0.05		-	<0.05	-	-
TPH								
C6-C9 Fraction	mg/kg	10	<10	-	-	<10	-	-
C10-C14 Fraction C15-C28 Fraction	mg/kg	50 100	<50 <100	-	-	<50 <100	-	-
CID-CZO I IBUIIUII	mg/kg		<100	-	-	<100	-	-
C29-C36 Fraction	ma/ka							
C29-C36 Fraction C10-C36 Fraction (Sum)	mg/kg mg/kg	100 50	<50	-	-	<50	-	-

LOR - Limit of Reporting
RPD - Relative Percentage Difference
<## Result is less than the LOR

**Elevated RPDs are highlighted as per QAQC Profile settings (Acceptable RPDs for each EQL multiplier range are: 50 (1 - 10 x EQL); 50 (10 - 30 x EQL); 50 (> 30 x EQL))

***Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any methods in the row header relate to those used in the primary laboratory

Page 2 of 2 5/07/2022

⁻ Analysis not performed

Grey shading indicates RPD exceedance (>50%)
*RPDs have only been considered where a concentration is greater than 1 times the EQL.

	Sa	mple Code	EM2211061046	EM2211061047	
		Field ID	RINS01	TRIP01	
		Date	9/06/2022	9/06/2022	
	N	Matrix Type	Water	Water	
Analyte BTEX	Unit	LOR			
Naphthalene (VOC)	mg/L	0.005	-	<0.005	
Benzene	μg/L	1	-	<1	
	μg/L	2	-	<2	
thylbenzene	μg/L	2	-	<2	
(ylene (m & p)	μg/L	2	-	<2	
(ylene (o)	μg/L	2	-	<2	
Kylene Total	μg/L	2	-	<2	
otal BTEX	μg/L	1	-	<1	
rh					
C6-C10 Fraction (F1)	μg/L	20	-	<20	
C6-C10 (F1 minus BTEX)	μg/L	20	-	<20	
C10-C16 Fraction (F2)	μg/L	100	-	<100	
C10-C16 Fraction (F2 minus					
Naphthalene)	μg/L	100	-	<100	
·C16-C34 Fraction (F3)	μg/L	100	-	<100	
C34-C40 Fraction (F4)	μg/L	100	-	<100	
C10-C40 Fraction (Sum)	μg/L	100	-	<100	
Metals					
Arsenic	mg/L	0.001	<0.001	-	
Barium	mg/L	0.001	<0.001	-	
Beryllium	mg/L	0.001	<0.001	-	
Boron	mg/L	0.05	< 0.05	-	
Cadmium	mg/L	0.0001	<0.0001	-	
Chromium (III+VI)	mg/L	0.001	0.002	-	
Cobalt	mg/L	0.001	<0.001	-	
Copper	mg/L	0.001	<0.001	-	
.ead	mg/L	0.001	<0.001	-	
Manganese	mg/L	0.001	<0.001	-	
Mercury	mg/L	0.0001	<0.0001	-	
lickel	mg/L	0.001	<0.001	-	
Selenium	mg/L	0.01	<0.01	-	
/anadium	mg/L	0.01	<0.01	-	
linc	mg/L	0.005	<0.005	-	
PH					
C6-C9 Fraction	μg/L	20	-	<20	
C10-C14 Fraction	μg/L	50	-	<50	
C15-C28 Fraction	μg/L	100	-	<100	
C29-C36 Fraction	μg/L	50	-	<50	
C10-C36 Fraction (Sum)	µg/L	50	_	<50	

5/07/2022 Page 1 of 1

⁻ Not analysed

< - Sample is lower than limit of reporting

In a said a
Inputs
Select contaminant from list below
Cr_III
Below needed to calculate fresh and aged ACLs
Enter % clay (values from 0 to 100%)
17
Below needed to calculate fresh and aged ABCs
Measured background concentration
(mg/kg). Leave blank if no measured value
or for fresh ABCs only
Enter iron content (aqua regia method)
(values from 0 to 50%) to obtain estimate
of background concentration
or for aged ABCs only
Enter State (or closest State)
Enter State (or closest State)
VIC
Enter traffic volume (high or low)
low

Outputs				
Land use Cr III soil-specific EILs				
	(mg contaminant/kg dry soil)			
	Fresh	Aged		
National parks and areas of high conservation value	#NUM!	160		
Urban residential and open public spaces	#NUM!	480		
Commercial and industrial	#NUM!	800		

Inputs				
Select contaminant from list below				
Cu				
Below needed to calculate fresh and aged ACLs				
Enter cation exchange capacity (silver thiourea method) (values from 0 to 100 cmolc/kg dwt)				
12.4				
Enter soil pH (calcium chloride method) (values from 1 to 14)				
8.2				
Enter organic carbon content (%OC) (values from 0 to 50%)				
0.6				
Below needed to calculate fresh and aged ABCs				
Measured background concentration (mg/kg). Leave blank if no measured value				
or for fresh ABCs only				
Enter iron content (aqua regia method) (values from 0 to 50%) to obtain estimate of background concentration				
or for aged ABCs only				
Enter State (or closest State)				
VIC				
Enter traffic volume (high or low)				
low				

Outputs				
Land use Cu soil-specific EILs				
	(mg contaminant/kg dry soil)			
	Fresh	Aged		
National parks and areas of high conservation value	#NUM!	75		
Urban residential and open public spaces	#NUM!	210		
Commercial and industrial	#NUM!	300		

In a set a
Inputs
Select contaminant from list below
Ni Polow pooded to coloulate freeh and agod
Below needed to calculate fresh and aged ACLs
Enter cation exchange capacity (silver
thiourea method) (values from 0 to 100
cmolc/kg dwt)
12.4
Below needed to calculate fresh and aged
ABCs
Measured background concentration
(mg/kg). Leave blank if no measured value
ou fou funch ADCo out
or for fresh ABCs only
Enter iron content (aqua regia method) (values from 0 to 50%) to obtain estimate
of background concentration
or accing suria correction and
or for aged ABCs only
Enter State (or elegant State)
Enter State (or closest State)
VIC
Enter traffic volume (high or low)
Enter traine volume (mgm or low)
low

Outputs					
Land use Ni soil-specific EILs					
	(mg contaminant/kg dry soil)				
	Fresh	Aged			
National parks and areas of high conservation value	#NUM!	40			
Urban residential and open public spaces	#NUM!	200			
Commercial and industrial	#NUM!	340			

Inputs
Select contaminant from list below
Zn Below needed to calculate fresh and aged
ACLs
Enter cation exchange capacity (silver thiourea method) (values from 0 to 100 cmolc/kg dwt)
12.4
Enter soil pH (calcium chloride method) (values from 1 to 14)
8.2
Below needed to calculate fresh and aged ABCs
Measured background concentration (mg/kg). Leave blank if no measured value
or for fresh ABCs only
Enter iron content (aqua regia method) (values from 0 to 50%) to obtain estimate of background concentration
or for aged ABCs only
Enter State (or closest State)
VIC
Enter traffic volume (high or low)
low

Outputs									
Land use	Zn soil-sp	ecific EILs							
	(mg contaminant	/kg dry soil)							
	Fresh	Aged							
National parks and areas of high conservation value	#NUM!	140							
Urban residential and open public spaces	#NUM!	520							
Commercial and industrial	#NUM!	780							

	1	A B C	D E UCL Statis	F tics for Unce	G ensored Full	H Data Sets	I	J K	L			
3	_											
Date Production Pool CL St 300/80/2022 2-48-09 PM		User Selected Options	3									
From File WorkShort-Als		·		:49:09 PM								
Full Precision OFF	-	•										
Number of Bootstrap Operations 2000	-	Full Precision	OFF									
Number of Bootstrap Operations		Confidence Coefficient	95%									
10	-											
TRH F2 at Shedis, 0.1 and 0.5 m samples		v - p										
TRH F2 at Sheds, 0.1 and 0.5 m samples												
13		TRH F2 at Sheds, 0.1 and 0.5 m sa	mples									
13	12			Comoral	Ctatiatica							
19		Toto	I Number of Observations		Statistics		Numbo	of Dictinat Observation	2			
Maximum 50		Tota	i Number of Observations	10								
			NA:	F0			Number					
SD 16.9 Coefficient of Variation 1.231 Size. Error of Mean 36.98 2.923	-											
19	17											
19												
Normal GOF Test Shapiro Wilk Critical Value 0.842 Data Not Normal at 5% Significance Level	19		Coefficient of Variation	1.231				Skewnes	s 2.923			
Shapiro Wilk Test Statistic 0.463	20			Normal C	OF Toot							
S% Shapiro Wilk Critical Value 0.842 Data Not Normal at 5% Significance Level			Ohamina Wills Taat Otatiatia		JOF TEST		Chanina Wi	Us COF Took				
Lilliefors Test Statistic 0.45 Lilliefors GOF Test	22					D-/ N	•					
Data Not Normal at 5% Significance Level	23	5% S	•			Data No						
Data Not Normal at 5% Significance Level	24					Б						
Assuming Normal Distribution 95% UCLs (Adjusted for Skewness) 192.3	25				0. 0: :=		ot Normal at §	5% Significance Level				
Assuming Normal UCL 95% UCLs (Adjusted for Skewness) 192.3 30 95% Student's-t UCL 162.8 95% Adjusted-CLT UCL (Chen-1995) 192.3 168.5 168.5 162.8 95% Modified-t UCL (Johnson-1978) 168.5	26		Data Not	Normal at 5	% Significar	nce Level						
95% Normal UCL 95% UCLs (Adjusted for Skewness) 30 95% Student's+t UCL 162.8 95% Adjusted-CLT UCL (Chen-1995) 192.3 31 95% Modified-t UCL (Johnson-1978) 168.5 32 33 Gamma GOF Test 34 A-D Test Statistic 2.491 Anderson-Darling Gamma GOF Test 35 5% A-D Critical Value 0.738 Data Not Gamma Distributed at 5% Significance Level 36 K-S Test Statistic 0.481 Kolmogorov-Smirnov Gamma GOF Test 37 5% K-S Critical Value 0.271 Data Not Gamma Distributed at 5% Significance Level 38 Data Not Gamma Distributed at 5% Significance Level 39 Pata Not Gamma Distributed at 5% Significance Level 39 Pata Not Gamma Distributed at 5% Significance Level 39 Pata Not Gamma Distributed at 5% Significance Level 39 Pata Not Gamma Statistics 40 Gamma Statistics 41	27	Accuming Normal Distribution										
95% Student's-t UCL 162.8 95% Adjusted-CLT UCL (Chen-1995) 192.3 33 95% Modified-t UCL (Johnson-1978) 168.5 32 33 34 A-D Test Statistic 2.491 Anderson-Darling Gamma GOF Test 35 5% A-D Critical Value 0.738 Data Not Gamma Distributed at 5% Significance Level 36 K-S Test Statistic 0.481 Kolmogorov-Smirnov Gamma GOF Test 37 5% K-S Critical Value 0.271 Data Not Gamma Distributed at 5% Significance Level 38 Data Not Gamma Distributed at 5% Significance Level 39 Data Not Gamma Distributed at 5% Significance Level 39 Data Not Gamma Distributed at 5% Significance Level 39 Data Not Gamma Distributed at 5% Significance Level 39 Data Not Gamma Distributed at 5% Significance Level 39 Data Not Gamma Distributed at 5% Significance Level 39 Data Not Gamma Distributed at 5% Significance Level 39 Data Not Gamma Distributed at 5% Significance Level 39 Data Not Gamma Distributed at 5% Significance Level 39 Data Not Gamma Distributed at 5% Significance Level 39 Data Not Gamma Distributed 30 Data Not Gamma Distributed 30 Data Not Gamma Distributed 30 Data Not Cognormal COF Test 30 Data Not Lognormal	28			suming Norn	nal Distributi							
33 95% Modified-t UCL (Johnson-1978) 168.5	29	95% N										
Section Sec	30		95% Student's-t UCL	162.8				•	<i>*</i>			
Samma GOF Test Samma GOF Test	31						95% Modifie	ed-t UCL (Johnson-197	3) 168.5			
A-D Test Statistic 2.491 Anderson-Darling Gamma GOF Test	32											
Section Sect	33				GOF Test							
Signature Sig	34				_							
37 5% K-S Critical Value 0.271 Data Not Gamma Distributed at 5% Significance Level	35				D				evel			
Data Not Gamma Distributed at 5% Significance Level	36											
Solidar Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistic Statist	37							ed at 5% Significance L	evel			
40 Gamma Statistics 41 k hat (MLE) 1.646 k star (bias corrected MLE) 1.219 42 Theta hat (MLE) 57.71 Theta star (bias corrected) 24.38 44 MLE Mean (bias corrected) 95 MLE Sd (bias corrected) 86.04 45 Adjusted Level of Significance 0.0267 Adjusted Chi Square Value (0.05) 14.14 46 Adjusted Level of Significance 0.0267 Adjusted Chi Square Value 12.8 47 Samma Statistic ME Square Value (0.05) 14.14 48 Adjusted Chi Square Value 12.8 49 95% Approximate Gamma UCL (use when n>=50) 163.8 95% Adjusted Gamma UCL (use when n<50)	38		Data Not Gamr	na Distribute	ed at 5% Sig	nificance Le	vel					
1.219 1.2	39											
Theta hat (MLE) 57.71 Theta star (bias corrected MLE) 77.93 143	40				Statistics							
Number N	41							•	,			
MLE Mean (bias corrected) 95 MLE Sd (bias corrected) 86.04 Approximate Chi Square Value (0.05) 14.14 Adjusted Level of Significance 0.0267 Adjusted Chi Square Value 12.8 Assuming Gamma Distribution 48 Assuming Gamma Distribution 49 95% Approximate Gamma UCL (use when n>=50)) 163.8 95% Adjusted Gamma UCL (use when n<50) 180.9 50 Lognormal GOF Test 52 Shapiro Wilk Test Statistic 0.525 Shapiro Wilk Lognormal GOF Test 53 5% Shapiro Wilk Critical Value 0.842 Data Not Lognormal at 5% Significance Level 54 Lilliefors Test Statistic 0.469 Lilliefors Lognormal GOF Test 55 5% Lilliefors Critical Value 0.262 Data Not Lognormal at 5% Significance Level 56 Data Not Lognormal at 5% Significance Level	42						Theta		*			
Approximate Chi Square Value (0.05) 14.14 Adjusted Level of Significance 0.0267 Adjusted Chi Square Value 12.8 Assuming Gamma Distribution Assuming Gamma Distribution 49 95% Approximate Gamma UCL (use when n>=50)) 163.8 95% Adjusted Gamma UCL (use when n<50) 180.9 Lognormal GOF Test Shapiro Wilk Test Statistic 0.525 Shapiro Wilk Lognormal GOF Test S% Shapiro Wilk Critical Value 0.842 Data Not Lognormal at 5% Significance Level Lilliefors Test Statistic 0.469 Lilliefors Lognormal GOF Test S% Lilliefors Critical Value 0.262 Data Not Lognormal at 5% Significance Level Data Not Lognormal at 5% Significance Level	43		· '	32.93				•	<i>,</i>			
45 Approximate Chi Square Value (0.05) 14.14 46 Adjusted Level of Significance 0.0267 Adjusted Chi Square Value 12.8 47 48 Assuming Gamma Distribution 49 95% Approximate Gamma UCL (use when n>=50)) 163.8 95% Adjusted Gamma UCL (use when n<50)	44	M	ILE Mean (bias corrected)	95				•	<i>*</i>			
Adjusted Chi Square Value 12.8 Adjusted Chi Square Value 12.8 Assuming Gamma Distribution 49 95% Approximate Gamma UCL (use when n>=50)) 163.8 95% Adjusted Gamma UCL (use when n<50) 180.9 50 Lognormal GOF Test 52 Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value 6 Data Not Lognormal at 5% Significance Level 54 Lilliefors Test Statistic 5% Lilliefors Critical Value 7 Data Not Lognormal at 5% Significance Level 55 Data Not Lognormal at 5% Significance Level	45						Approximate	Chi Square Value (0.0	5) 14.14			
Assuming Gamma Distribution 48	46	Adju	sted Level of Significance	0.0267			Ad	djusted Chi Square Valu	e 12.8			
Assuming Gamma Distribution 95% Approximate Gamma UCL (use when n>=50)) 163.8 95% Adjusted Gamma UCL (use when n<50) 180.9 Lognormal GOF Test Shapiro Wilk Test Statistic 0.525 Shapiro Wilk Lognormal GOF Test Shapiro Wilk Critical Value 0.842 Data Not Lognormal at 5% Significance Level Lilliefors Test Statistic 0.469 Lilliefors Lognormal at 5% Significance Level Data Not Lognormal at 5% Significance Level Data Not Lognormal at 5% Significance Level	47								,			
95% Approximate Gamma UCL (use when n>=50)) 163.8 95% Adjusted Gamma UCL (use when n<50) 180.9 Lognormal GOF Test Shapiro Wilk Test Statistic 0.525 Shapiro Wilk Lognormal GOF Test Shapiro Wilk Critical Value 0.842 Data Not Lognormal at 5% Significance Level Lilliefors Test Statistic 0.469 Lilliefors Lognormal GOF Test Shapiro Wilk Critical Value 0.262 Data Not Lognormal at 5% Significance Level Data Not Lognormal at 5% Significance Level	48		Ass	suming Gam	ma Distribut	tion						
Lognormal GOF Test51Lognormal GOF Test52Shapiro Wilk Test Statistic0.525Shapiro Wilk Lognormal GOF Test535% Shapiro Wilk Critical Value0.842Data Not Lognormal at 5% Significance Level54Lilliefors Test Statistic0.469Lilliefors Lognormal GOF Test555% Lilliefors Critical Value0.262Data Not Lognormal at 5% Significance Level56Data Not Lognormal at 5% Significance Level	49	95% Approximate Gamma	a UCL (use when n>=50))	163.8		95% Ac	ljusted Gamr	ma UCL (use when n<50	0) 180.9			
Lognormal GOF Test51Shapiro Wilk Test Statistic0.525Shapiro Wilk Lognormal GOF Test535% Shapiro Wilk Critical Value0.842Data Not Lognormal at 5% Significance Level54Lilliefors Test Statistic0.469Lilliefors Lognormal GOF Test555% Lilliefors Critical Value0.262Data Not Lognormal at 5% Significance Level56Data Not Lognormal at 5% Significance Level	50				1							
52Shapiro Wilk Test Statistic0.525Shapiro Wilk Lognormal GOF Test535% Shapiro Wilk Critical Value0.842Data Not Lognormal at 5% Significance Level54Lilliefors Test Statistic0.469Lilliefors Lognormal GOF Test555% Lilliefors Critical Value0.262Data Not Lognormal at 5% Significance Level56Data Not Lognormal at 5% Significance Level	51			Lognormal	GOF Test							
53 5% Shapiro Wilk Critical Value 0.842 Data Not Lognormal at 5% Significance Level 54 Lilliefors Test Statistic 0.469 Lilliefors Lognormal GOF Test 55 5% Lilliefors Critical Value 0.262 Data Not Lognormal at 5% Significance Level 56 Data Not Lognormal at 5% Significance Level		Ş	Shapiro Wilk Test Statistic	0.525		Sha	piro Wilk Log	normal GOF Test				
54 Lilliefors Test Statistic 0.469 Lilliefors Lognormal GOF Test 55 5% Lilliefors Critical Value 0.262 Data Not Lognormal at 5% Significance Level 56 Data Not Lognormal at 5% Significance Level	53	5% S	Shapiro Wilk Critical Value	0.842		Data Not	Lognormal a	t 5% Significance Level				
55 5% Lilliefors Critical Value 0.262 Data Not Lognormal at 5% Significance Level 56 Data Not Lognormal at 5% Significance Level			Lilliefors Test Statistic	0.469		Lil	liefors Logno	ormal GOF Test				
Data Not Lognormal at 5% Significance Level		Ę	5% Lilliefors Critical Value	0.262		Data Not	Lognormal a	t 5% Significance Level				
			Data Not L	ognormal at	5% Significa	ance Level						
~′ <u> </u>												
	57											

	А	В	С	D	Е	F	G	L				
58	Mr. (1 1D. 2040											
59			ı	Minimum of L	.ogged Data	3.912					logged Data	4.22
60			N	Naximum of L	.ogged Data	6.04				SD of	logged Data	0.706
61												
62					Assu	iming Logno	rmal Distribu	ution				
63					95% H-UCL	159			90% (Chebyshev (MVUE) UCL	143.5
64			95% (Chebyshev (I	MVUE) UCL	170			97.5% (Chebyshev (MVUE) UCL	206.9
65			99% (Chebyshev (I	MVUE) UCL	279.3						
66												
67					-		tion Free UC					
68					Data do not fo	ollow a Disce	ernible Distri	bution (0.05)			
69												
70	Nonparametric Distribution Free UCLs											
71								162.8				
72	95% Standard Bootstrap UCL N/A 95% Bootstrap-t UCL						N/A					
73			9	5% Hall's Bo	otstrap UCL	N/A			95% F	Percentile Bo	ootstrap UCL	N/A
74				95% BCA Bo	•	N/A						
75			90% Ch	ebyshev(Mea	an, Sd) UCL	205.9				• `	an, Sd) UCL	256.2
76			97.5% Ch	ebyshev(Mea	an, Sd) UCL	325.9			99% Ch	ebyshev(Me	an, Sd) UCL	462.9
77												
78						Suggested	UCL to Use					
79			95% Che	ebyshev (Mea	an, Sd) UCL	256.2						
80												
81	Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.											
82	Recommendations are based upon data size, data distribution, and skewness.											
83	These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).											
84	However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.											
85												

1	Α	В	С	D	E UCL Statis	F stics for Unce	G ensored Full Data	H a Sets	I	J	K	L
2												
3		User Sele	cted Options	;								
4	Da	ate/Time of C	omputation	ProUCL 5.1	1/07/2022 11	:34:40 AM						
5			From File	WorkSheet_	a.xls							
6		Fu	III Precision	OFF								
7		Confidence	Coefficient	95%								
8	Number	of Bootstrap	Operations	2000								
9												
10												
11	TRH F3 at	Sheds, 0.1 a	and 0.5 m saı	mples								
12						0	04-41-41					
13			Total	I Number of O	hearyations	General 3	Statistics		Numbo	of Distinct	Observations	4
14			TOLAI	Number of O	bsei valions	10					Observations	0
15					Minimum	100			Number	or missing	Mean	699
16					Maximum	3320					Median	100
17					SD	1251				C+d I	Error of Mean	395.5
18				Coefficient	of Variation	1.789				Siu. I	Skewness	1.82
19				- COGINCIEIIL	oi vailauUII	1.703					OKEWI1699	1.02
20						Normal G	OF Test					
21			9	Shapiro Wilk T	est Statistic	0.538	101 1630		Shapiro Wi	k GOF Tee	+	
22				hapiro Wilk C		0.842		Data No	t Normal at 5			
23			370 0		est Statistic	0.464		Data NO		GOF Test	TICC LCVCI	
24			5	5% Lilliefors C		0.262		Data No	t Normal at 5		ince I evel	
25				- Iniciois o			% Significance L		t Homai at C	770 Olgrillica		
26					Duta 1101		70 Cigiiiiicacc 1					
27	Assuming Normal Distribution											
28			95% No	ormal UCL	, 10	ounning recen		95%	UCLs (Adju	sted for Ske	wness)	
29					dent's-t UCL	1424					(Chen-1995)	1593
30									•		ohnson-1978)	
31											,	
33						Gamma (GOF Test					
34				A-D T	est Statistic	2.368		Ander	son-Darling	Gamma GO	OF Test	
35				5% A-D C	ritical Value	0.775	Data N	Not Gam	ma Distribut	ed at 5% Si	gnificance Lev	el
36				K-S T	est Statistic	0.432		Kolmog	orov-Smirno	v Gamma (GOF Test	
37				5% K-S C	ritical Value	0.28	Data N	Not Gam	ma Distribut	ed at 5% Si	gnificance Lev	el
38				Da	ta Not Gamr	na Distribute	ed at 5% Significa	ance Lev	vel .			
39												
40						Gamma	Statistics					
41					k hat (MLE)	0.522			k	star (bias co	rrected MLE)	0.432
42				Thet	ta hat (MLE)	1338			Theta	star (bias co	rrected MLE)	1617
43				n	u hat (MLE)	10.45				nu star (bi	as corrected)	8.646
44			M	LE Mean (bia	s corrected)	699				`	as corrected)	1063
45									Approximate	Chi Square	e Value (0.05)	3.114
46			Adjus	sted Level of	Significance	0.0267			Ac	ljusted Chi	Square Value	2.566
47												
48							ma Distribution					
49		95% Approxi	mate Gamma	a UCL (use wh	hen n>=50))	1940		95% Adj	justed Gamr	na UCL (us	e when n<50)	2355
50												
51			-		1		GOF Test					
52				Shapiro Wilk T		0.569	_		oiro Wilk Log			
53			5% S	Shapiro Wilk C		0.842	D		_ognormal a			
54					est Statistic	0.398	_		iefors Logno			
55			5	5% Lilliefors C		0.262			_ognormal a	t 5% Signific	ance Level	
56					Data Not L	ognormal at	5% Significance	Level				
57												

	Α	В	С	D	E	F	G							
58	M													
59			ı	Minimum of L	.ogged Data	4.605				Mean of	logged Data	5.342		
60			N	/laximum of L	.ogged Data	8.108				SD of	logged Data	1.423		
61														
62					Assu	ıming Logno	ormal Distribu	ution						
63					95% H-UCL	3888			90% (Chebyshev (MVUE) UCL	1183		
64			95% (Chebyshev (I	MVUE) UCL	1498			97.5% (Chebyshev (MVUE) UCL	1936		
65			99% (Chebyshev (I	MVUE) UCL	2795								
66														
67					Nonparame	tric Distribut	tion Free UC	L Statistics						
68)ata do not fe	ollow a Disce	ernible Distri	ibution (0.05)					
69														
70														
71	95% CLT UCL 1349 95% Jackknife UCL							1424						
72	95% Standard Bootstrap UCL N/A 95% Bootstrap-t UCL							N/A						
73			9	5% Hall's Bo	otstrap UCL	N/A			95% F	Percentile Bo	ootstrap UCL	N/A		
74			Ç	95% BCA Bo	otstrap UCL	N/A								
75			90% Ch	ebyshev(Mea	an, Sd) UCL	1885			95% Ch	ebyshev(Me	an, Sd) UCL	2423		
76			97.5% Ch	ebyshev(Mea	an, Sd) UCL	3169			99% Ch	ebyshev(Me	an, Sd) UCL	4634		
77														
78						Suggested	UCL to Use							
79			95% Che	ebyshev (Mea	an, Sd) UCL	2423								
80														
81	Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.													
82	Recommendations are based upon data size, data distribution, and skewness.													
83	These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).													
84	Hov	wever, simu	lations result	s will not cov	er all Real W	orld data set	ts; for additio	nal insight th	ne user may v	want to cons	ult a statistici	an.		
85														

Appendix B – Lotsearch Report

Date: 22 Apr 2022 08:27:58

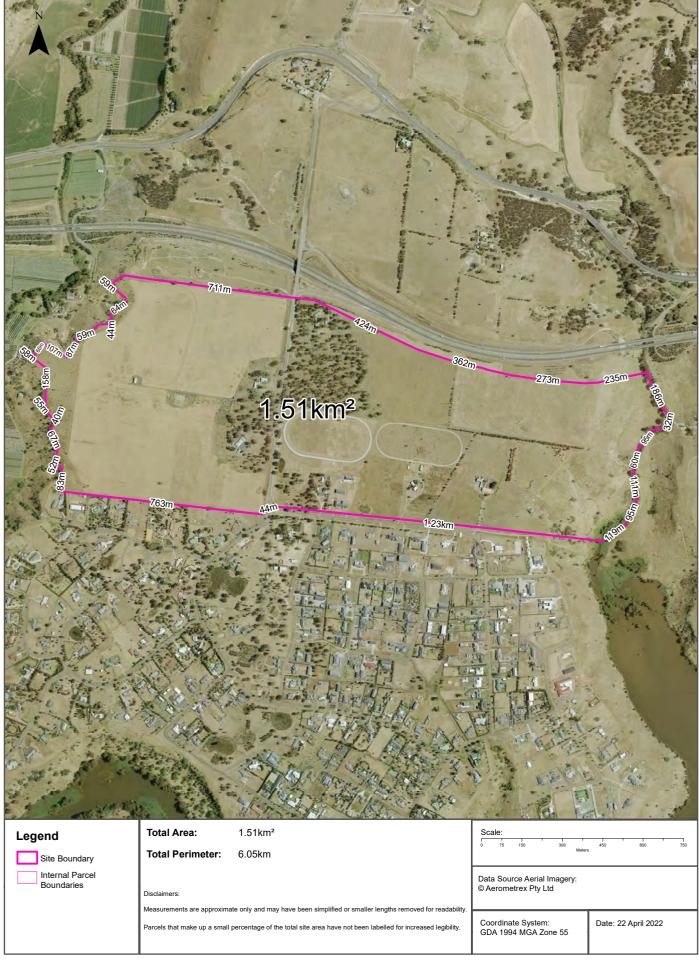
Reference: LS031410 EP

Address: 124 Hopetoun Park, Hopetoun Park, VIC 3188

Disclaimer:

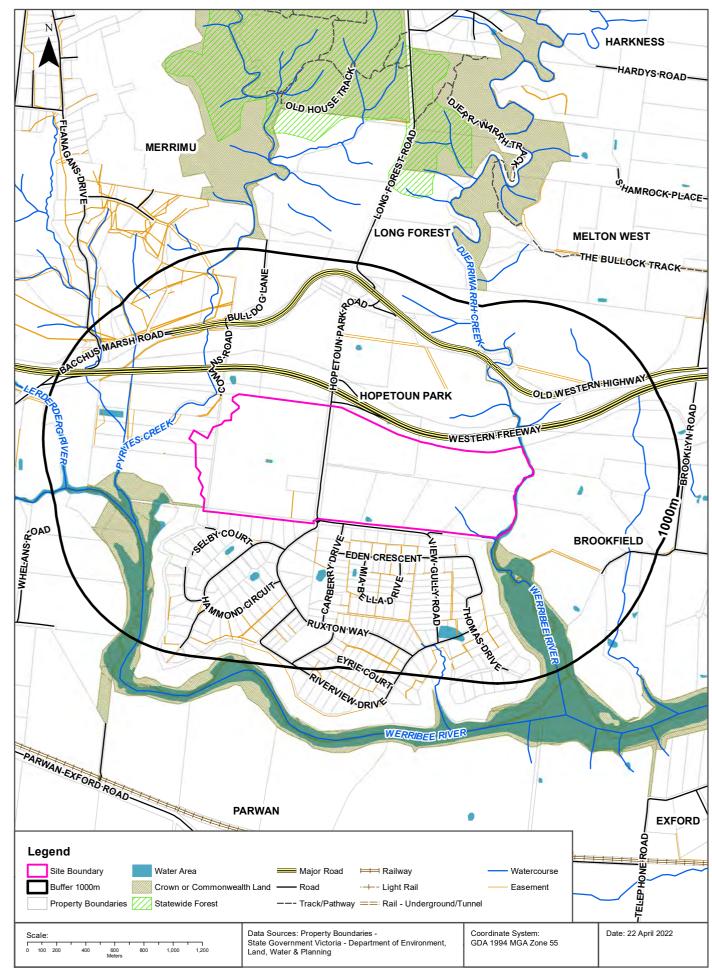
The purpose of this report is to provide an overview of some of the site history, environmental risk and planning information available, affecting an individual address or geographical area in which the property is located. It is not a substitute for an on-site inspection or review of other available reports and records. It is not intended to be, and should not be taken to be, a rating or assessment of the desirability or market value of the property or its features. You should obtain independent advice before you make any decision based on the information within the report. The detailed terms applicable to use of this report are set out at the end of this report.

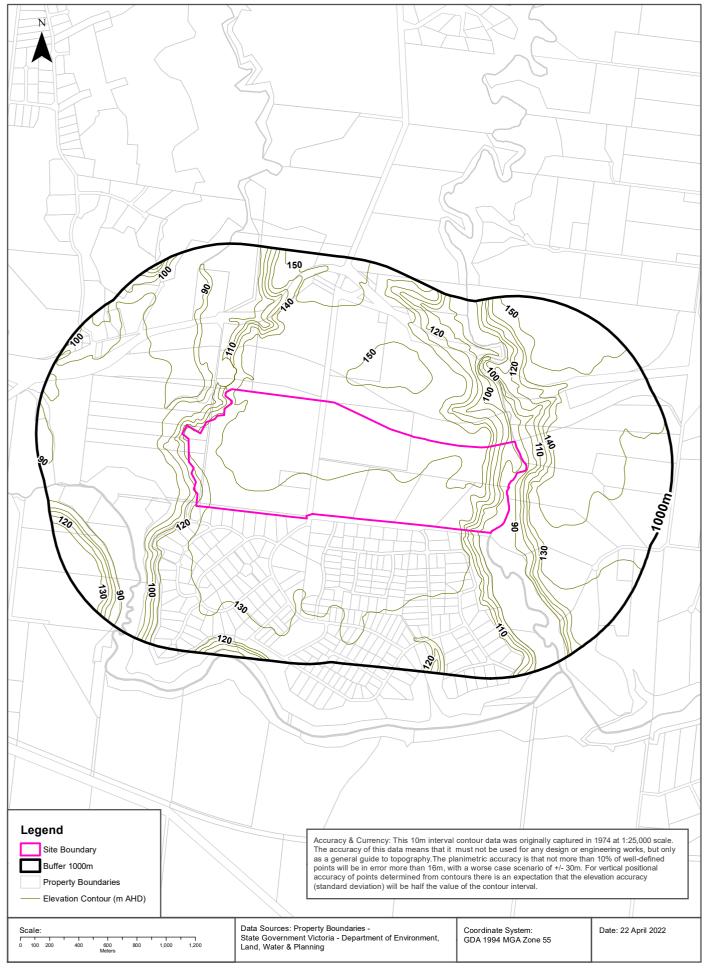
Dataset Listing


Datasets contained within this report, detailing their source and data currency:

Dataset Name	Custodian	Supply Date	Currency Date	Update Frequency	Dataset Buffer (m)		No. Features within 100m	No. Features within Buffer
Topographic and Cadastre data	State Government Victoria - Department of Environment, Land, Water & Planning	28/01/2022	28/01/2022	Monthly	-	-	-	-
Current EPA Priority Sites	Environment Protection Authority (Vic)	19/04/2022	28/02/2022	Monthly	1000m	0	0	0
Former EPA Priority Sites & other Remedial Notices	Environment Protection Authority (Vic)	04/10/2021	01/09/2021	Monthly	1000m	0	0	0
EPA PFAS Site Investigations	Environment Protection Authority (Vic)	28/09/2021	18/09/2020	Monthly	2000m	0	0	0
Defence PFAS Investigation & Management Program - Investigation Sites	Department of Defence	06/04/2022	06/04/2022	Monthly	2000m	0	0	0
Defence PFAS Investigation & Management Program - Management Sites	Department of Defence	06/04/2022	06/04/2022	Monthly	2000m	0	0	0
Airservices Australia National PFAS Management Program	Airservices Australia	06/04/2022	06/04/2022	Monthly	2000m	0	0	0
Defence 3 Year Regional Contamination Investigation Program	Department of Defence	03/03/2022	03/03/2022	Quarterly	2000m	0	0	0
EPA Environmental Audit Reports	Environment Protection Authority (Vic)	21/03/2022	21/03/2022	Monthly	1000m	0	0	0
EPA Groundwater Zones with Restricted Uses	Environment Protection Authority (Vic)	23/03/2022	23/03/2022	Monthly	1000m	0	0	0
Current EPA Licensed Activities	Environment Protection Authority (Vic)	21/03/2022	22/07/2021	Monthly	1000m	0	0	0
Former EPA Licensed Activities	Environment Protection Authority (Vic)	21/03/2022	26/11/2021	Monthly	1000m	0	0	0
EPA Works Approvals	Environment Protection Authority (Vic)	28/03/2022	28/03/2022	Monthly	1000m	0	0	0
National Waste Management Facilities Database	Geoscience Australia	12/05/2021	07/03/2017	Annually	1000m	0	0	0
Statewide Waste and Resource Recovery Infrastructure Plan Facilities	State Government Victoria - Department of Sustainability	27/11/2014	31/12/2012	None planned	1000m	0	0	0
EPA Prescribed Industrial Waste	Environment Protection Authority (Vic)	12/08/2020	12/08/2020	Quarterly	1000m	0	0	6
EPA Victorian Landfill Register	Environment Protection Authority (Vic)	31/01/2022	25/08/2020	Quarterly	1000m	0	0	0
Former Gasworks	Various historical sources collated by Lotsearch	15/08/2017	15/08/2017	Not required	1000m	0	0	0
National Liquid Fuel Facilities	Geoscience Australia	15/02/2021	15/03/2012	Annually	1000m	0	0	0
Historical Business Directories (Premise & Intersection Matches)	Hardie Grant; Sands & McDougall, State Library Victoria			Not required	150m	0	0	0
Historical Business Directories (Road & Area Matches)	Hardie Grant; Sands & McDougall, State Library Victoria			Not required	150m	-	0	0
Historical Business Directory Dry Cleaners & Motor Garages/Service Stations (Premise & Intersection Matches)	Hardie Grant; Sands & McDougall, State Library Victoria			Not required	500m	0	0	0
Historical Business Directory Dry Cleaners & Motor Garages/Service Stations (Road & Area Matches)	Hardie Grant; Sands & McDougall, State Library Victoria			Not required	500m	-	0	0
Features of Interest	State Government Victoria - Department of Environment, Land, Water & Planning	29/09/2021	29/09/2021	Quarterly	1000m	2	4	15
Hydrogeology Map of Australia	Commonwealth of Australia (Geoscience Australia)	08/10/2014	17/03/2000	As required	1000m	1	1	1
Groundwater Salinity	State Government Victoria - Department of Environment, Land, Water & Planning	14/08/2015	29/08/2012	Unknown	0m	2	-	-
Depth to Watertable	State Government Victoria - Department of Environment, Land, Water & Planning	14/08/2015	29/08/2012	Unknown	0m	5	-	-
Surface Elevation	State Government Victoria - Department of Environment, Land, Water & Planning	14/08/2015	23/09/2013	Unknown	0m	1	-	-

Dataset Name	Custodian	Supply Date	Currency Date	Update Frequency	Dataset Buffer (m)	No. Features On-site	No. Features within 100m	No. Features within Buffer
Basement Elevation	State Government Victoria - Department of Environment, Land, Water & Planning	14/08/2015	23/09/2013	Unknown	0m	1	-	-
Groundwater Boreholes WMIS	State Government Victoria - Department of Environment, Land, Water & Planning	23/08/2021	23/08/2021	Quarterly	2000m	0	0	35
Groundwater Boreholes Earth Resources Database	State Government Victoria - Department of Economic Development, Jobs, Transport and Resources	20/05/2021	17/02/2010	Annually	2000m	0	0	22
Groundwater Boreholes Fed Uni	Federation University Australia	21/12/2017	07/01/2014	As required	2000m	0	0	16
Historical Mining Activity - Shafts	State Government Victoria - Department of Economic Development, Jobs, Transport and Resources	11/05/2021	11/05/2021	Annually	1000m	0	0	1
Geological Units 1:50,000	State Government Victoria - Department of Economic Development, Jobs, Transport and Resources	13/01/2015	24/06/2014	Unknown	1000m	6	7	7
Geological Structures 1:50,000	State Government Victoria - Department of Economic Development, Jobs, Transport and Resources	13/01/2015	24/06/2014	Unknown	1000m	0	0	3
Dykes and Marker Beds 50k	State Government Victoria - Department of Economic Development, Jobs, Transport and Resources	13/01/2015	24/06/2014	Unknown	1000m	0	0	0
Shear zones 250k	State Government Victoria - Department of Economic Development, Jobs, Transport and Resources	13/01/2015	24/06/2014	Unknown	1000m	0	0	0
Atlas of Australian Soils	ABARES	19/05/2017	17/02/2011	As required	1000m	1	1	3
Victorian Soil Type Mapping	State Government Victoria - Department of Economic Development, Jobs, Transport and Resources	24/08/2017	21/03/2016	Unknown	1000m	3	5	6
Atlas of Australian Acid Sulfate Soils	CSIRO	19/01/2017	21/02/2013	As required	1000m	1	1	3
Coastal Acid Sulfate Soils	State Government Victoria - Department of Economic Development, Jobs, Transport and Resources	28/03/2017	30/03/2011	None planned	1000m	0	0	0
Planning Scheme Zones	State Government Victoria - Department of Environment, Land, Water & Planning	10/02/2022	02/02/2022	Monthly	1000m	1	5	13
Planning Scheme Overlay	State Government Victoria - Department of Environment, Land, Water & Planning	10/02/2022	02/02/2022	Monthly	1000m	3	10	37
Commonwealth Heritage List	Australian Government Department of Agriculture, Water and the Environment	18/05/2021	20/11/2019	Annually	1000m	0	0	0
National Heritage List	Australian Government Department of Agriculture, Water and the Environment	18/05/2021	20/11/2019	Annually	1000m	0	0	0
Victorian Heritage Register	State Government Victoria - Department of Environment, Land, Water & Planning	05/08/2021	05/08/2021	Quarterly	1000m	0	0	4
Cultural Heritage Sensitivity	State Government Victoria - Department of Premier and Cabinet	29/09/2021	29/09/2021	Quarterly	1000m	5	7	30
Bushfire Prone Area	State Government Victoria - Department of Transport, Planning and Local Infrastructure	05/08/2021	06/07/2021	Quarterly	1000m	2	2	2
Fire History	State Government Victoria - Department of Environment, Land, Water & Planning	15/11/2021	15/11/2021	Quarterly	1000m	1	1	1
Flood - 1 in 100 Year Modelled Flood Extent	State Government Victoria - Department of Environment, Land, Water & Planning	11/08/2021	05/02/2018	Quarterly	1000m	1	2	2
Victorian Coastal Inundation Sea Level Rise	State Government Victoria - Department of Environment, Land, Water & Planning	10/04/2018	24/10/2017	Unknown	1000m	0	0	0
Native Vegetation (Modelled 2005 Ecological Vegetation Classes)	State Government Victoria - Department of Environment, Land, Water & Planning	13/01/2015	31/12/2005	None planned	1000m	4	5	9
Ramsar Wetland Areas in Victoria	State Government Victoria - Department of Environment, Land, Water & Planning	28/03/2022	13/03/2019	Annually	1000m	0	0	0
Groundwater Dependent Ecosystems Atlas	Bureau of Meteorology	14/08/2017	15/05/2017	Unknown	1000m	5	6	16
Inflow Dependent Ecosystems Likelihood	Bureau of Meteorology	14/08/2017	15/05/2017	Unknown	1000m	7	10	21


Site Diagram


Topographic Data

Elevation Contours (m AHD)

EPA Priority Sites & Pollution Notices

124 Hopetoun Park, Hopetoun Park, VIC 3188

Current EPA Priority Sites Register

Sites on the current EPA priority sites register that exist within the dataset buffer:

Notice No	Address	Suburb	Issue	Loc Conf	Dist (m)	Direction
N/A	No records in buffer					

Priority Sites Data Custodian: State Government Victoria - Environment Protection Authority (EPA)

Former EPA Priority Sites & Other Pollution Notices

Sites within the dataset buffer that have been issued a Pollution Notice:

Note. Due to pollution notices being revoked and removed from published lists this is not an exhaustive list of all past pollution notices.

Notice No	Notice Type	Company	Address	Suburb	Status	Issue	Date Issued	Loc Conf	Dist	Dir
N/A	No records in buffer									

Pollution Notice Data Custodian: State Government Victoria - Environment Protection Authority (EPA)

PFAS Investigation & Management Programs

124 Hopetoun Park, Hopetoun Park, VIC 3188

EPA PFAS Site Investigations

Sites being investigated by the EPA for PFAS contamination within the dataset buffer:

Map ID	Site Name	Address	Location Confidence	Distance	Direction
N/A	No records in buffer				

EPA PFAS Site Investigations Data Custodian: State Government Victoria - Environment Protection Authority (EPA)

Defence PFAS Investigation & Management Program Investigation Sites

Sites being investigated by the Department of Defence for PFAS contamination within the dataset buffer:

Map ID	Base Name	Address	Location Confidence	Distance	Direction
N/A	No records in buffer				

Defence PFAS Investigation & Management Program Data Custodian: Department of Defence, Australian Government

Defence PFAS Investigation & Management Program Management Sites

Sites being managed by the Department of Defence for PFAS contamination within the dataset buffer:

Map ID	Base Name	Address	Location Confidence	Distance	Direction
N/A	No records in buffer				

Defence PFAS Investigation & Management Program Data Custodian: Department of Defence, Australian Government

Airservices Australia National PFAS Management Program

Sites being investigated or managed by Airservices Australia for PFAS contamination within the dataset buffer:

Map ID	Site Name	Impacts	Location Confidence	Distance	Direction
N/A	No records in buffer				

Airservices Australia National PFAS Management Program Data Custodian: Airservices Australia

Defence Sites

124 Hopetoun Park, Hopetoun Park, VIC 3188

Defence 3 Year Regional Contamination Investigation Program

Sites which have been assessed as part of the Defence 3 Year Regional Contamination Investigation Program within the dataset buffer:

Property ID	Base Name	Address	Known Contamination	Loc Conf	Dist	Dir
N/A	No records in buffer					

Defence 3 Year Regional Contamination Investigation Program, Data Custodian: Department of Defence, Australian Government

EPA Records

124 Hopetoun Park, Hopetoun Park, VIC 3188

EPA Environmental Audits

EPA environmental audit records that exist within the dataset buffer: Note. Please click on CARMS No. to activate a hyperlink to online documentation. If link does not work, documentation may still be accessible via the EPA Interaction Portal.

CARMS No	Transaction No	Site	Address	Suburb	Date Complete	Audit Category	Loc Conf	Distance	Direction
N/A	No records in buffer								

Environmental Audit Data Custodian: State Government Victoria - Environment Protection Authority (EPA)

EPA Records

124 Hopetoun Park, Hopetoun Park, VIC 3188

EPA Groundwater Zones with Restricted Uses

EPA GQRUZ records that exist within the dataset buffer:

Note. Please click on CARMS No. to activate a hyperlink to online documentation.

CARMS No	EPA Id	Site History	Site Address	Restricted Uses	Status	Loc Conf	Distance	Direction
N/A	No records in buffer							

Environmental GQRUZ Data Custodian: State Government Victoria - Environment Protection Authority (EPA)

EPA Activities

124 Hopetoun Park, Hopetoun Park, VIC 3188

EPA Licensed Activities

EPA licensed activities that exist within the dataset buffer:

Trans No	Licence No	Licence Type	Organisation	Premise Ref	Premise Address 1	Premise Address 2	Activities	Loc Conf	Dist (m)	Direction
N/A	No records in buffer									

Licensed Activity Data Custodian: State Government Victoria - Environment Protection Authority (EPA)

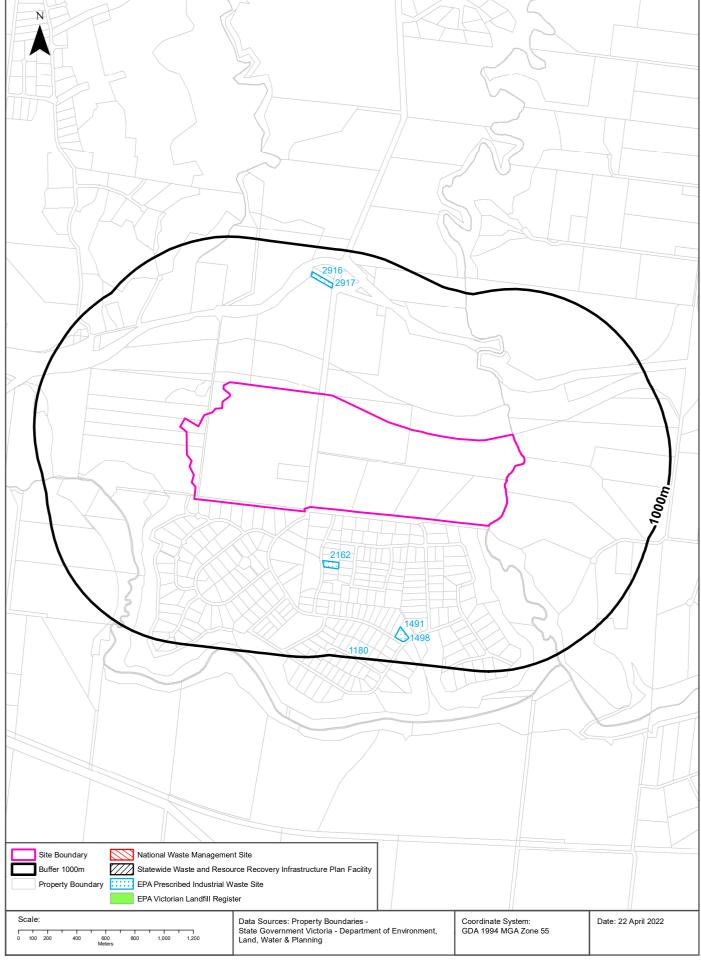
Former EPA Licensed Activities

Former EPA licensed activities that exist within the dataset buffer:

Licence No	Organisation	Premise Address	Suburb	Activities	Loc Conf	Dist (m)	Direction
N/A	No records in buffer						

Former Licensed Activity Data Custodian: State Government Victoria - Environmental Protection Authority (EPA)

EPA Works Approvals


EPA works approvals that exist within the dataset buffer:

Transaction No	Status	Approval No	Organisation	Premise Address	Suburb	Scheduled Categories	Loc Conf	Dist (m)	Direction
N/A	No records in buffer								

Works Approvals Data Custodian: State Government Victoria - Environment Protection Authority (EPA)

Waste Management Facilities and Landfills

Waste Management Facilities & Landfills

124 Hopetoun Park, Hopetoun Park, VIC 3188

National Waste Management Site Database

Sites on the National Waste Management Site Database within the dataset buffer:

Site Id	Owner	Name	Address	Suburb	Class	Landfill	Reprocess	Transfer	Comments	Loc Conf	Dist (m)	Direction
N/A	No records in buffer											

Waste Management Facilities Data Source: Australian Government Geoscience Australia Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Statewide Waste and Resource Recovery Infrastructure Plan Facilities

Statewide Waste and Resource Recovery Infrastructure Plan Facilities within the dataset buffer:

Map Id	Owner	Site Name	Address	Suburb	Category	Sub Category	Loc Conf	Distance	Direction
N/A	No records in buffer								

SWRRIPF Data Source: State Government Victoria - Department of Sustainability

EPA Prescribed Industrial Waste

EPA Prescribed Industrial Waste treaters, disposers and permitted transporters within the dataset buffer:

Map Id	Company Name	Address	Suburb	Treatment /Disposal	Transport	Accredited Agent	EPA List Status	Loc Conf	Dist (m)	Dir
2162	WOLF (VIC) PTY LTD	16 CARBERRY DR	HOPETOUN PARK VIC 3340	No	Yes	No	Current EPA List	Premise Match	357m	South
2916	NOTMAN, BRUCE	24 HOPETOUN PARK RD	HOPETOUN PARK VIC 3340	No	Yes	No	Current EPA List	Premise Match	735m	North
2917	NOTMAN, LEIGH [HOPETOUN]	24 HOPETOUN PARK RD	HOPETOUN PARK VIC 3340	No	Yes	No	Current EPA List	Premise Match	735m	North
1498	JAHEW PTY LTD	35 RUXTON WAY	HOPETOUN PARK VIC 3340	No	Yes	No	Current EPA List	Premise Match	756m	South
1491	DIACONO, PAUL	35 RUXTON WAY	HOPETOUN PARK VIC 3340	No	Yes	No	Previous EPA List	Premise Match	756m	South
1180	JRT EARTHMOVING PTY LTD	7 EYRIE CT	HOPETOUN PARK VIC 3340	No	Yes	No	Previous EPA List	Premise Match	996m	South

Prescribed Industrial Waste Data Source: State Government Victoria - Environment Protection Authority (EPA)

Waste Management Facilities & Landfills

124 Hopetoun Park, Hopetoun Park, VIC 3188

EPA Victorian Landfill Register

EPA Victorian Landfill Register sites within the dataset buffer:

Landfill Register No.	Site	Address	Operating Status	Est. Year Of Closure	Waste type	Loc Conf	Dist (m)	Direction
N/A	No records in buffer							

EPA Victorian Landfill Register Data Source: State Government Victoria - Environment Protection Authority (EPA)

Former Gasworks and Liquid Fuel Facilities

124 Hopetoun Park, Hopetoun Park, VIC 3188

Former Gasworks

Former Gasworks identified from various historical sources within the dataset buffer: Note - As this is a dataset collated from various historical sources, it is not an exhaustive list of all former Gasworks

Map Id	Site Name	Date Opened	Year Closed	Location Confidence	Distance	Direction
N/A	No records in buffer					

Former Gasworks Data Source: Collated from various historical sources

National Liquid Fuel Facilities

National Liquid Fuel Facilties within the dataset buffer:

Map Id	Owner	Name	Address	Suburb	Class	Operational Status	Operator	Revision Date	Loc Conf	Dist (m)	Direction
N/A	No records in buffer										

National Liquid Fuel Facilities Data Source: Geoscience Australia Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Historical Business Directories

124 Hopetoun Park, Hopetoun Park, VIC 3188

Business Directory Records 1905-1991 Premise or Road Intersection Matches

Universal Business Directory and Sands & McDougall Directory records, from years 1991, 1980, 1970, 1960, 1950, 1945, 1925 & 1905, mapped to a premise or road intersection within the dataset buffer:

Map Id	Business Activity	Premise	Ref No.	Year	Location Confidence	Distance to Property Boundary or Road Intersection	Direction
N/A	No records in buffer						

Business Directory Records 1905-1991 Road or Area Matches

Universal Business Directory and Sands & McDougall Directory records, from years 1991, 1980, 1970, 1960, 1950, 1945, 1925 & 1905, mapped to a road or an area, within the dataset buffer. Records are mapped to the road when a building number is not supplied, cannot be found, or the road has been renumbered since the directory was published:

Map Id	Business Activity	Premise	Ref No.	Year	Location Confidence	Distance to Road Corridor or Area
N/A	No records in buffer					

Historical Business Directories

124 Hopetoun Park, Hopetoun Park, VIC 3188

Dry Cleaners, Motor Garages & Service Stations Premise or Road Intersection Matches

Dry Cleaners, Motor Garages & Service Stations from Sands & McDougall's Directories and UBD Business Directories, mapped to a premise or road intersection within the dataset buffer.

Map Id	Business Activity	Premise	Ref No.	Year	Location Confidence	Distance to Property Boundary or Road Intersection	Direction
N/A	No records in buffer						

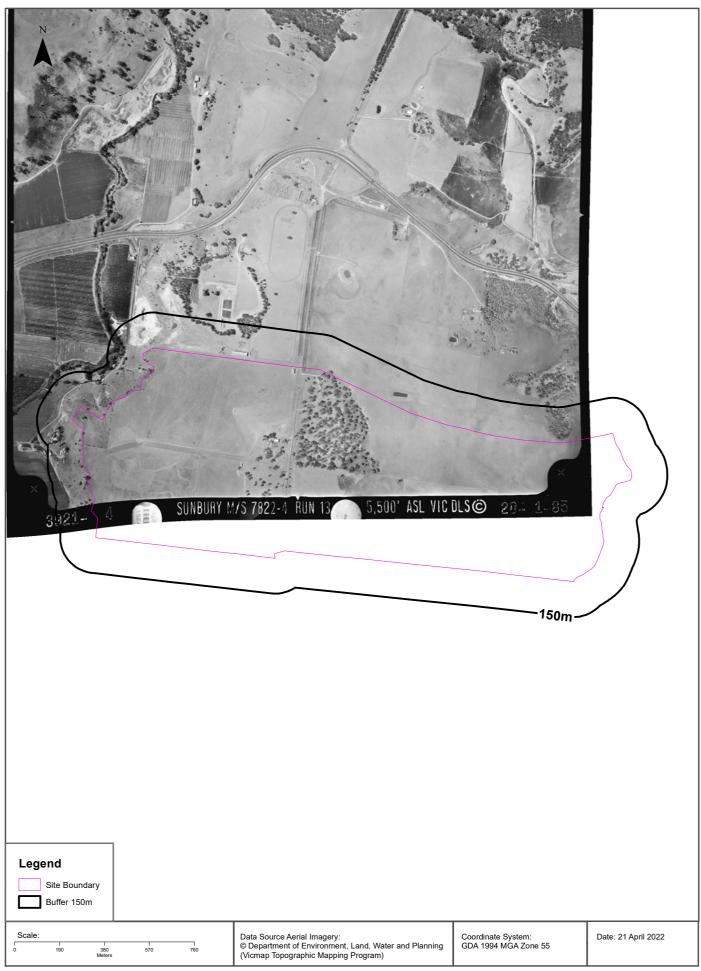
Dry Cleaners, Motor Garages & Service Stations Road or Area Matches

Dry Cleaners, Motor Garages & Service Stations from UBD Business Directories and Sands & McDougall's Directories, mapped to a road or an area within the dataset buffer. Records are mapped to the road when a building number is not supplied, cannot be found, or the road has been renumbered since the directory was published.

Map Id	Business Activity	Premise	Ref No.	Year	Location Confidence	Distance to Road Corridor or Area
N/A	No records in buffer					

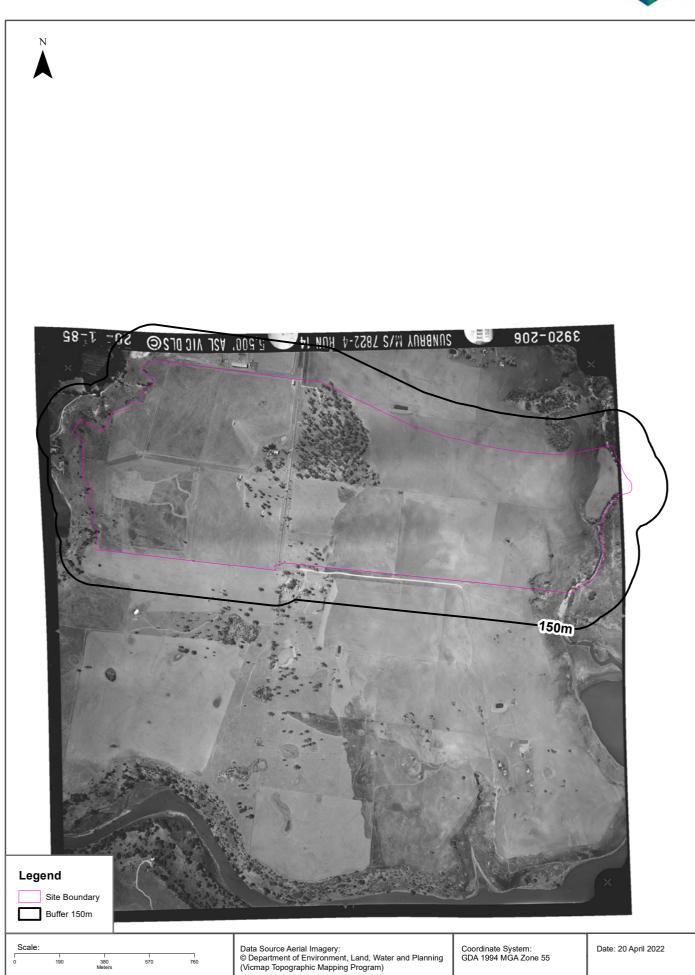
Aerial Imagery 2021
124 Hopetoun Park, Hopetoun Park, VIC 3188

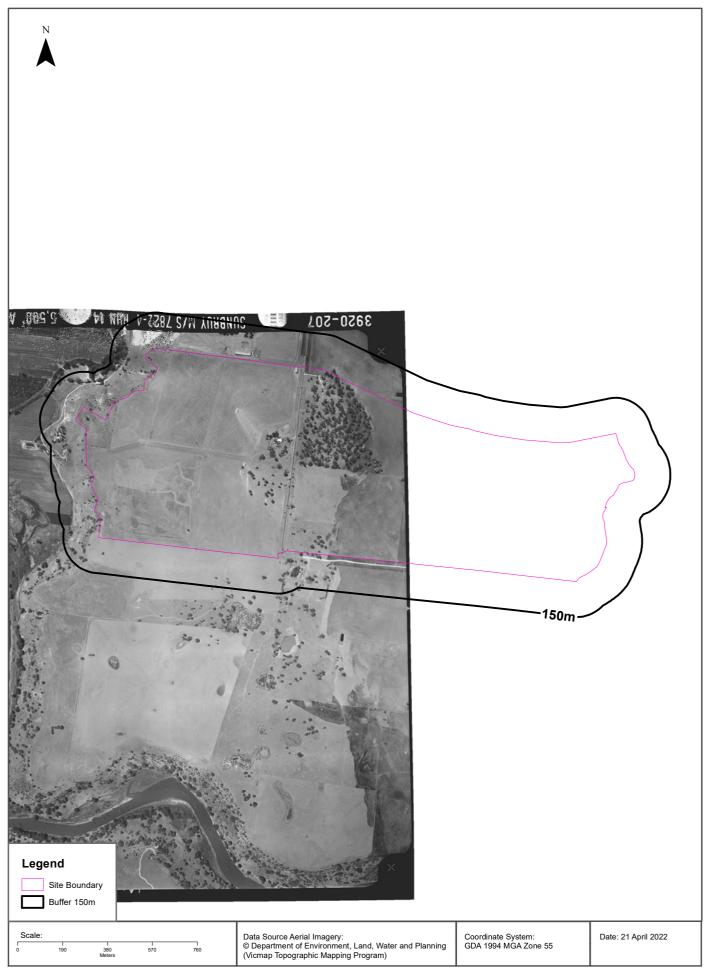
Aerial Imagery 2017
124 Hopetoun Park, Hopetoun Park, VIC 3188

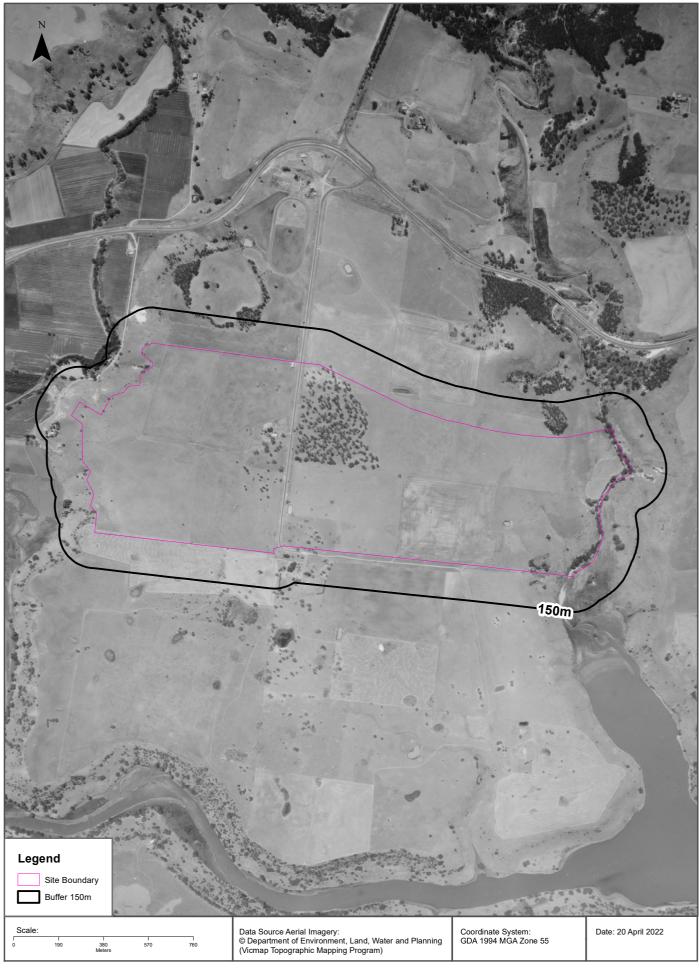


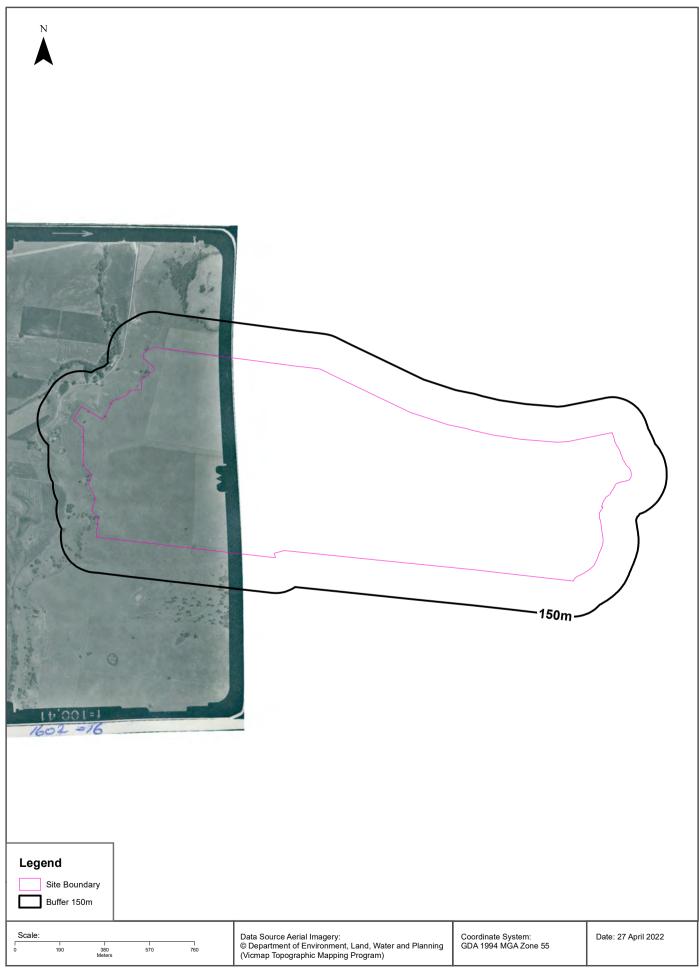
Aerial Imagery 1990 124 Hopetoun Park, Hopetoun Park, VIC 3188

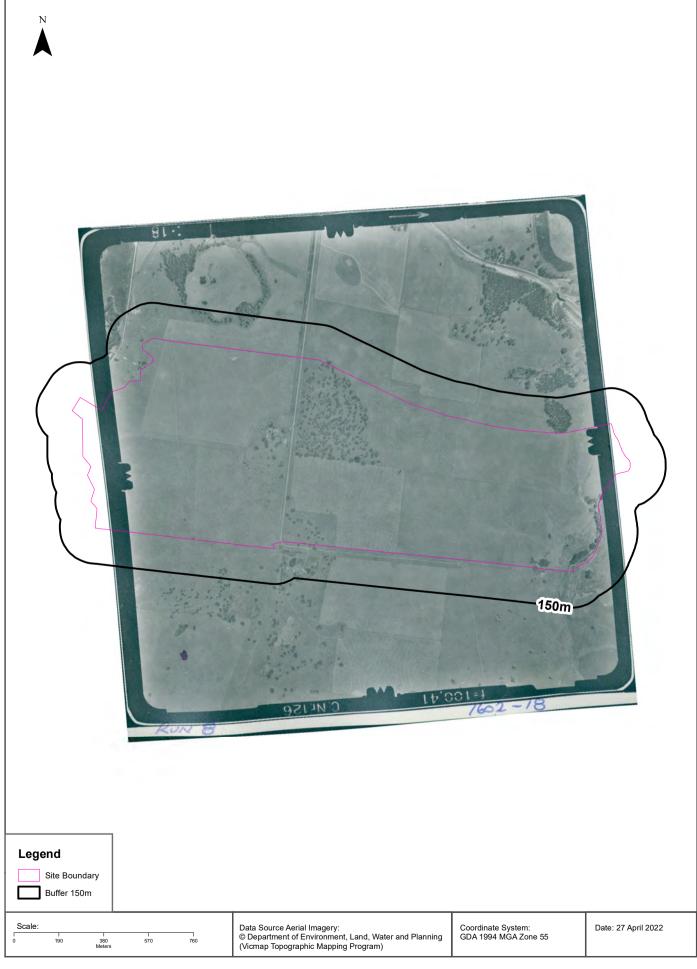


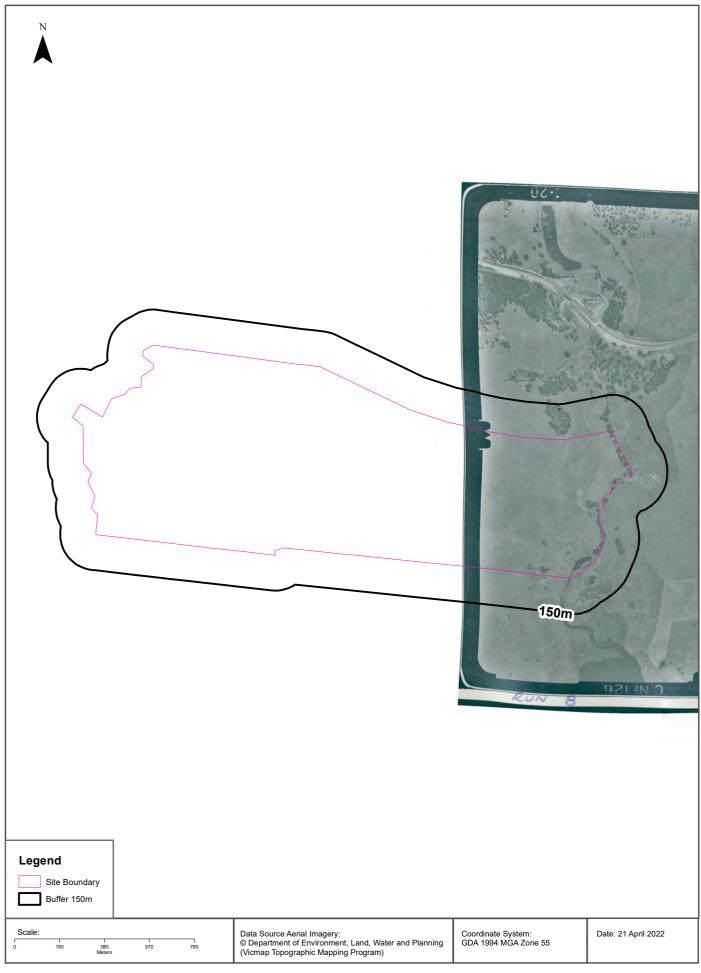




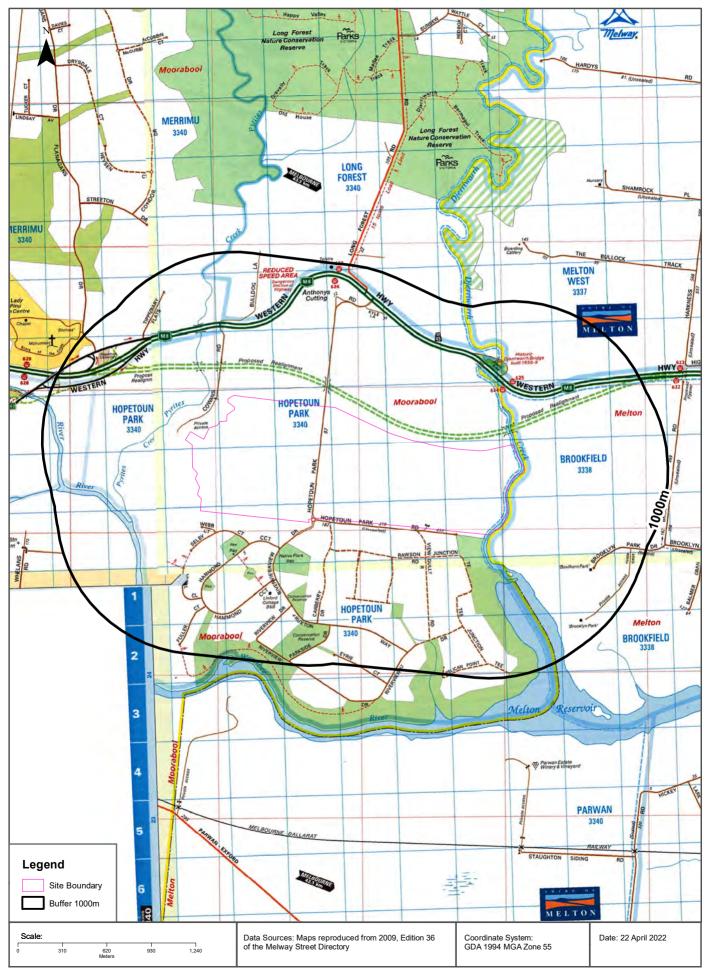


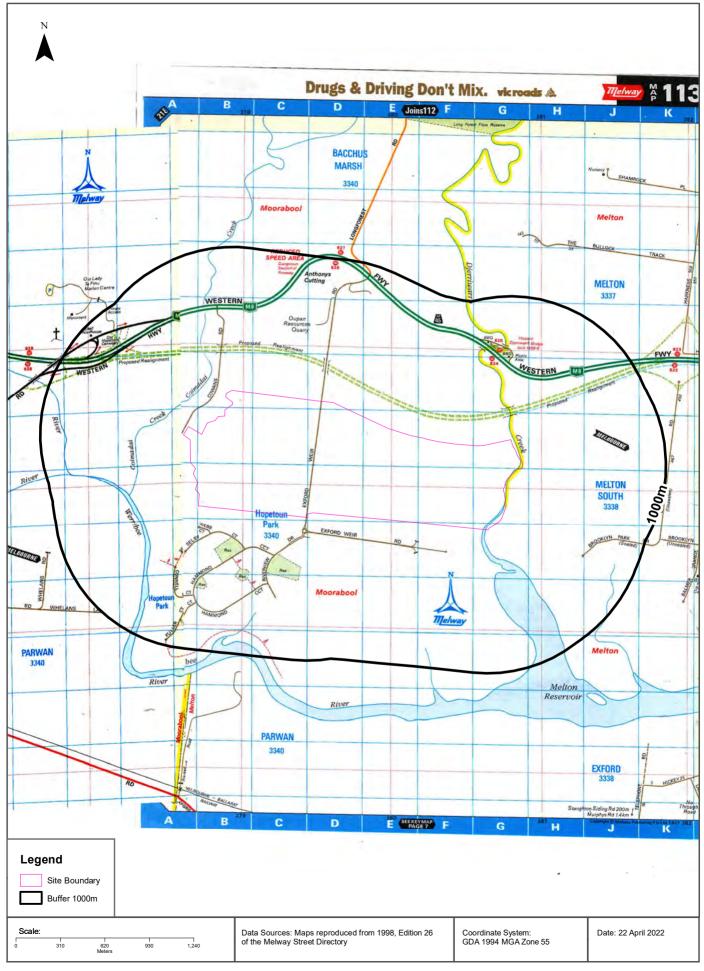


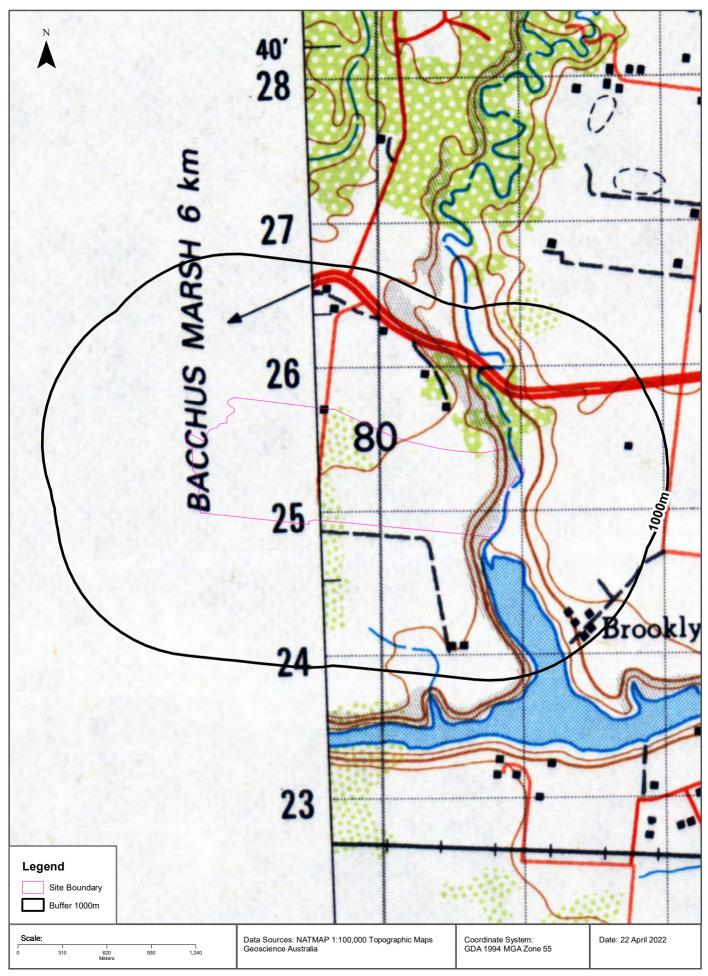




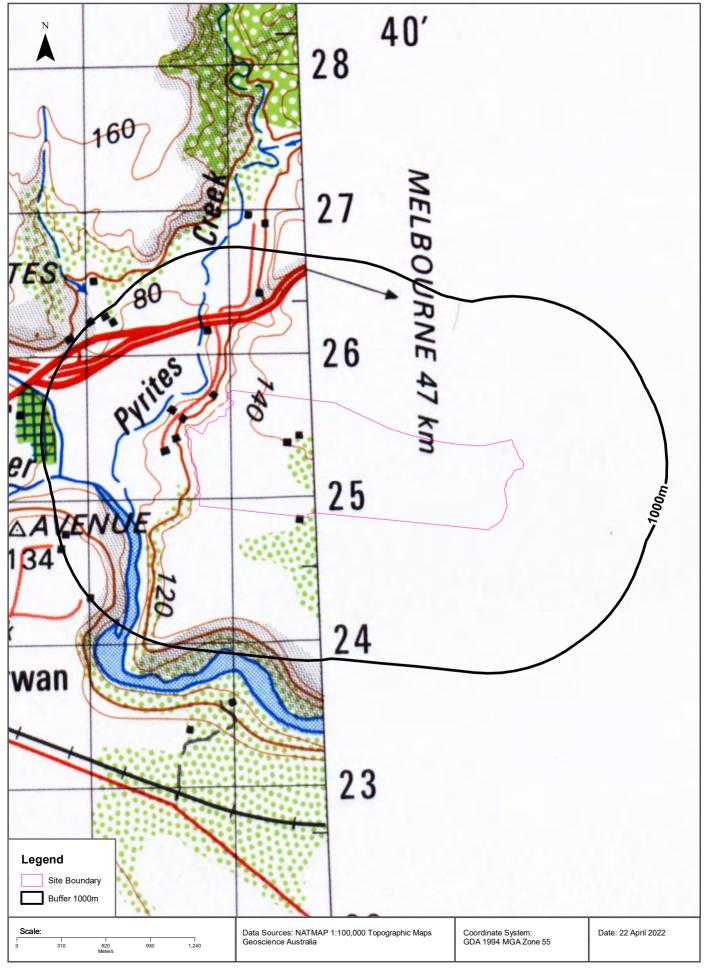
Aerial Imagery 1951
124 Hopetoun Park, Hopetoun Park, VIC 3188

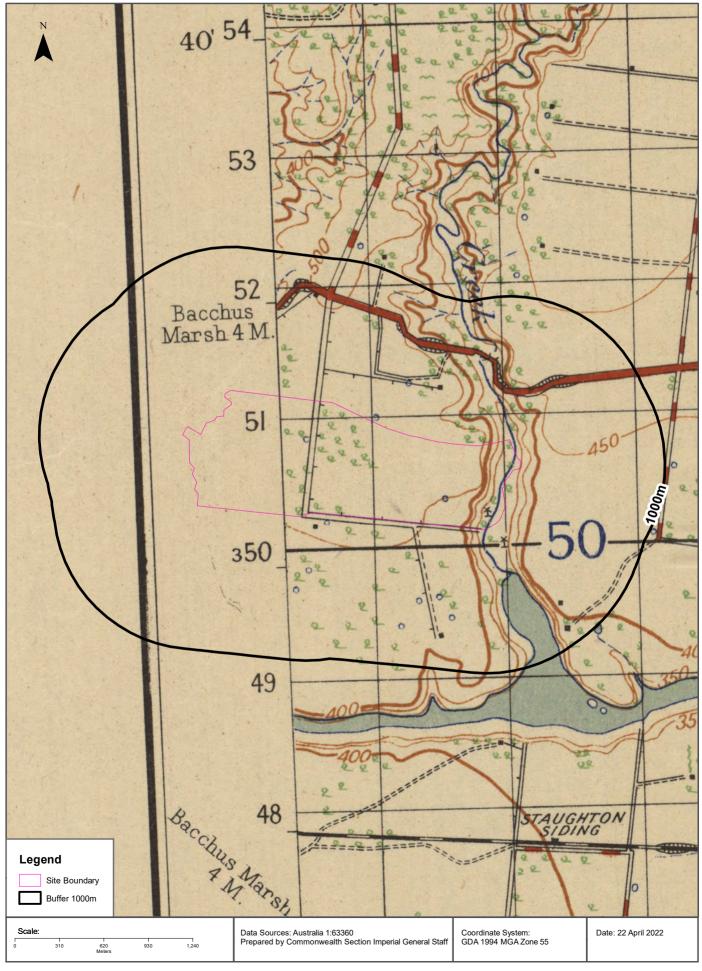


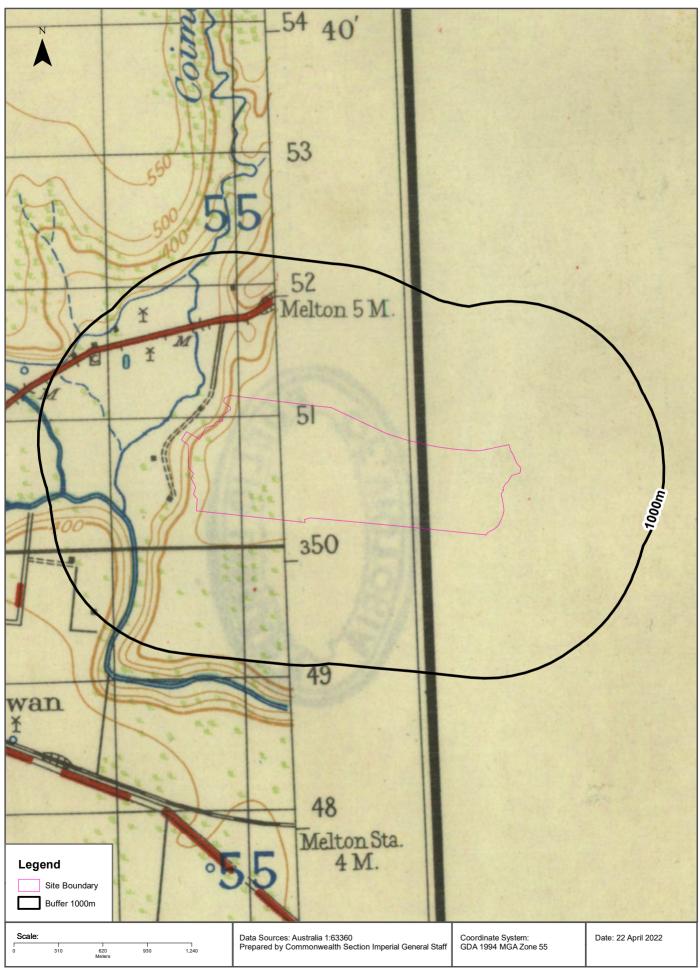

Historical Map 2009

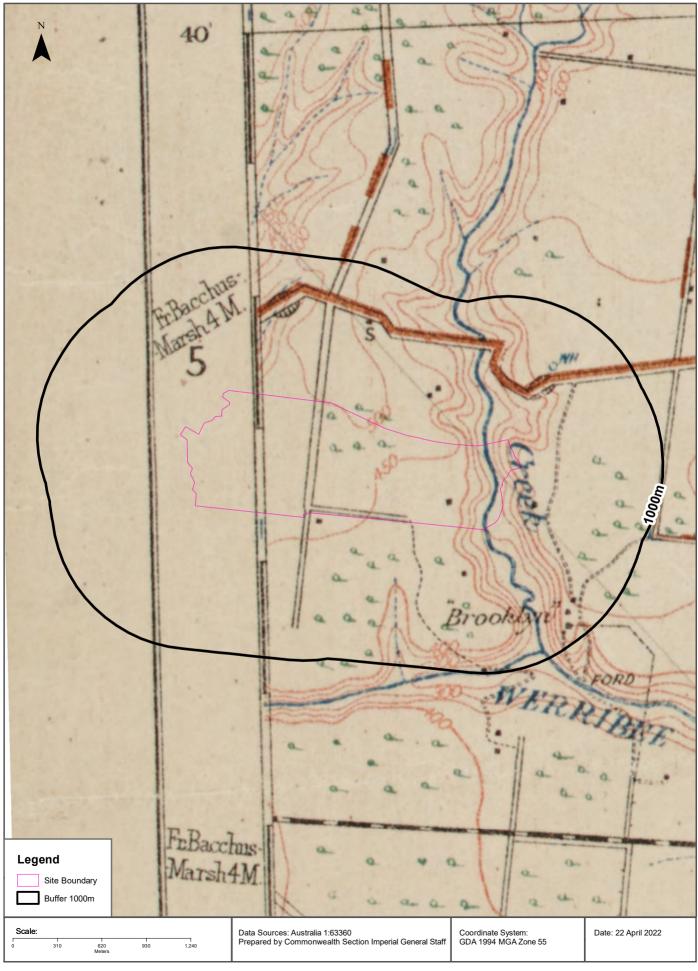


Historical Map 1998






Historical Map c.1938


Historical Map c.1936

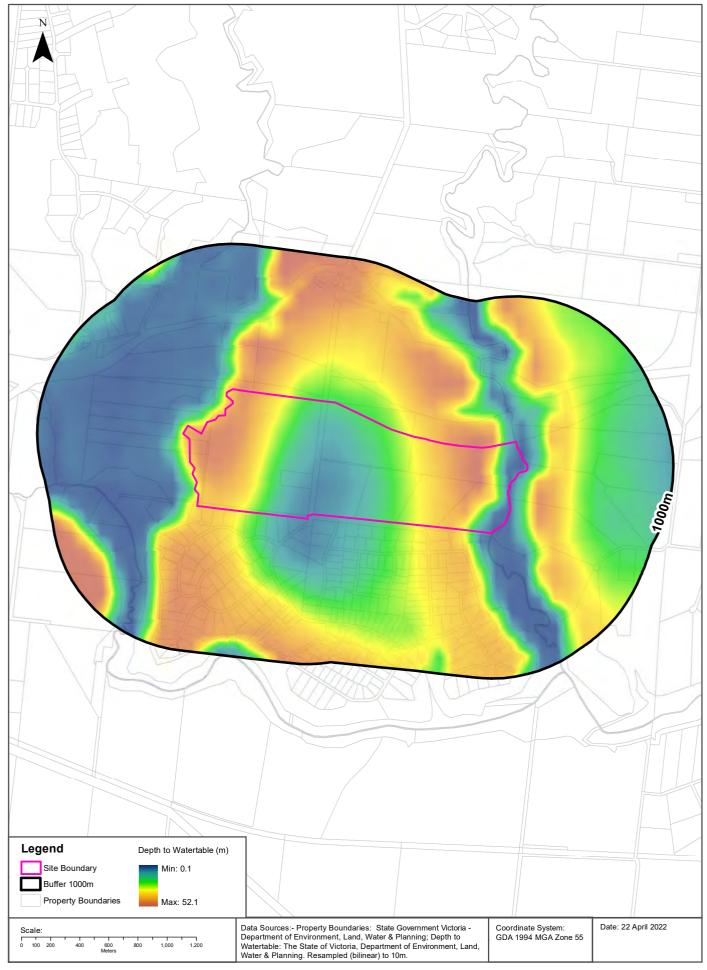
Historical Map c.1916

Features of Interest

Features of Interest

124 Hopetoun Park, Hopetoun Park, VIC 3188

Features of Interest


Features of Interest within the dataset buffer:

Feature Id	Feature Type	Feature Sub Type	Name	Distance	Direction
1004394	sport facility	training track		0m	On-site
1004389	sport facility	training track		0m	On-site
66775	excavation site	quarry		36m	North West
638680	reserve	park		49m	South West
638694	reserve	park		146m	South West
638700	reserve	park		195m	South West
1151625	recreational resource	playground		263m	South West
638713	reserve	park		280m	South West
638718	reserve	park		466m	South West
1217030	recreational resource	playground		469m	South
1155891	reserve	park		477m	South
1156079	reserve	park		506m	South
638740	reserve	park		688m	South
70989	reserve	cemetery	Hopetoun Cemetery	755m	North West
638750	reserve	park		850m	South

Features of Interest Data Custodian: State Government Victoria - Dept of Environment, Land, Water & Planning Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Depth to Watertable

Hydrogeology & Groundwater

124 Hopetoun Park, Hopetoun Park, VIC 3188

Hydrogeology

Description of aquifers within the dataset buffer:

Description	Distance	Direction
Fractured or fissured, extensive aquifers of low to moderate productivity	0m	On-site

Hydrogeology Map of Australia: Commonwealth of Australia (Geoscience Australia)
Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Groundwater Salinity

On-site Groundwater Salinity:

Groundwater Salinity	Percent Of Site Area
7,000 - 13,000 mg/l	71
3,500 - 7,000 mg/l	29

Depth to Watertable

On-site Depth to Watertable:

Depth to Watertable	Percent Of Site Area
20 to 50 metres	56
10 to 20 metres	21
5 to 10 metres	17
Less than 5 metres	6
Greater than 50 metres	1

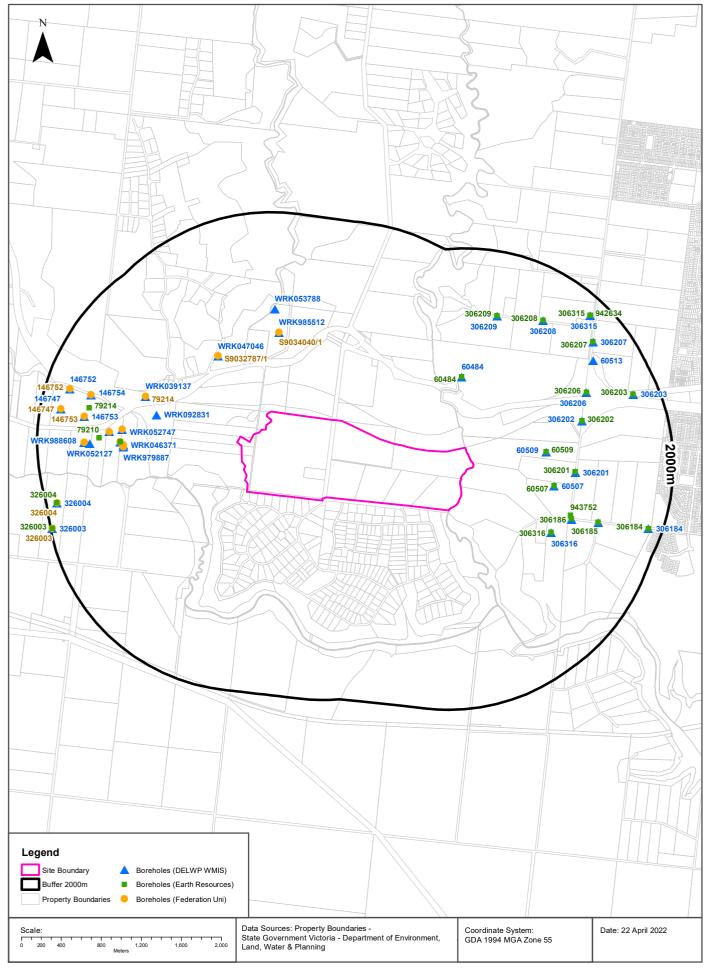
Surface Elevation

Approximate on-site Surface Elevation:

Surface Elevation	
82 AHDm to 145 AHDm	

Basement Elevation

Approximate on-site Basement Elevation:


Basement Elevation - Basement Rocks comprise Lower Palaeozoic basement rocks that form the highlands and the crystalline basement; and Mesozoic rocks of the Otway and Gippsland basins both outcropping and subsurface

65 AHDm to 100 AHDm

Groundwater Data Custodian: State Government Victoria - Dept of Environment, Land, Water & Planning Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Groundwater Boreholes

Groundwater Boreholes

124 Hopetoun Park, Hopetoun Park, VIC 3188

Boreholes (DELWP WMIS)

Boreholes from the Department of Environment, Land, Water & Planning's Water Measurement Information System, within the dataset buffer:

Bore Id	Use Type	Drillers Log	Construction	Latest Water Levels	Geology	Completed Date	Dist (m)	Dir
60484	Not Known					31/12/1958	711m	North East
60509	Not Known	0.00m-4.50m SOIL AND CLAY 4.50m-15.00m BASALT 15.00m-17.00m RED BASALTIC CLAY 17.00m-38.00m BASALT 38.00m-44.00m COMPACTED GRAVELLY CLAYS 44.00m-55.00m BROWN COAL				22/08/1987	739m	East
WRK047046		0.00m-1.00m SILTY TOP SOIL 1.00m-11.00m SILTY CLAY 11.00m-18.00m SAND, MEDIUM 18.00m-24.00m GRAVEL 24.00m-30.00m GREY CLAY	0.00m-12.00m INNER LINING - CASING = Pvc 12.00m-24.00m INNER LINING - SCREEN = Pvc 9.00m-10.00m OUTER LINING - GRAVEL = Bentonite 10.00m-30.00m OUTER LINING - GRAVEL = Gravel			09/02/2008	758m	North West
WRK985512	Domestic & Stock	1.00m-2.00m SANDY TOPSOIL 2.00m-5.00m SILTY CLAY 6.00m-10.00m HEAVY GRAVELS 10.00m-11.00m SILTY CLAY 11.00m-15.00m SANDS & GRAVELS	3.00m-15.00m INNER LINING - CASING = Pvc 0.00m-1.00m OUTER LINING - GRAVEL = Bentonite 1.00m-15.00m OUTER LINING - GRAVEL = Gravel			01/01/1950	798m	North West
60507	Not Known	0.00m-5.00m CLAY 5.00m-8.00m BASALT 8.00m-18.00m SCORIA 18.00m-32.00m BASALT 32.00m-50.00m YELLOW CLAY				01/07/1984	832m	East
WRK092831	Irrigation	0.00m-7.00m Top soil & gravel 7.00m-12.00m LARGE GRAVEL & CLAY 12.00m-22.00m SILTY CLAYS 22.00m-27.00m COAL& GRAVEL 27.00m-58.00m SAND& CLAY SEAMS	0.50m-49.00m INNER LINING - CASING = Pvc 49.00m-55.00m INNER LINING - SCREEN = Stainless Steel 55.00m-58.00m INNER LINING - CASING = Stainless Steel 0.00m-32.00m OUTER LINING - GRAVEL = Cement 32.00m-58.00m OUTER LINING - GRAVEL = Gravel		49.00m-55.00m Sand	06/04/2016	852m	West
306316	Non Groundwater					09/03/1984	976m	East
WRK039137	Irrigation	0.00m-4.27m LOAM 4.27m-8.53m GRAVEL (OLD BED) 8.53m-9.75m COAL 9.75m-17.06m SAND (SOUP) 17.06m-18.89m COAL 18.89m-24.38m COURSE SAND AND COAL 24.38m-36.57m MEDIUM SAND	0.00m-30.40m INNER LINING - CASING = Pvc 30.40m-36.50m INNER LINING - SCREEN = Pvc		30.40m-36.50m Sand	17/05/1984	1023 m	West
306201	Non Groundwater					25/05/1983	1024 m	East
WRK053788	Domestic & Stock, Irrigation	0.00m-1.50m top soil 1.50m-7.00m clay 7.00m-10.00m gravel 10.00m-16.00m grey clay 16.00m-19.00m sand 19.00m-30.00m grey clay	0.10m-16.00m INNER LINING - CASING = Pvc 16.00m-19.00m INNER LINING - SCREEN = Stainless Steel 19.00m-30.00m INNER LINING - CASING = Pvc 0.00m-9.00m OUTER LINING - GRAVEL = Cement 9.00m-12.00m OUTER LINING - GRAVEL = Bentonite 12.00m-30.00m OUTER LINING - GRAVEL = Gravel		0.10m-16.00m Clay 16.00m-19.00m Sand 19.00m-30.00m Clay	25/08/2010	1031 m	North West
306186	Non Groundwater					12/05/1983	1118 m	East

Bore Id	Use Type	Drillers Log	Construction	Latest Water Levels	Geology	Completed Date	Dist (m)	Dir
WRK046371	Irrigation	0.00m-2.00m DRY LIGHT BROWN SEDS 2.00m-4.00m MOIST LIGHT BROWN CLAYS SAND SEDIMENTS 4.00m-6.00m GRE CLAYS AND SEDS (HIGH CLAY) 6.00m-8.00m GREY SEDS LOW CLAY CONTENT. 23 METRES LOW/SPH ROUND AND ANG 8.00m-10.00m UP TO .05 METRE LOW/SPH ROUND AND ANG PEBBLES, SEDS AND CLAY 10.00m-14.00m COAL AND ANGULAR QUARTZ .08 METRE STONE 14.00m-16.00m COAL (DENSE) AND ANG QUARTZ 16.00m-18.00m COAL (DENSE) VERY LITTLE STONE 18.00m-20.00m COAL (DENSE) SEDS 20.00m-22.00m CARB. COARSE GRAIN SEDS 22.00m-24.00m COAL AND SEDS. A FEW .08 METRE PEBBLES 24.00m-25.00m COAL AND SEDS. A FEW .08 METRE PEBBLES 26.00m-28.00m COAL AND SEDS 26.00m-28.00m COAL AND SEDS 26.00m-32.00m COAL AND SEDS 1 MM ANG PEBS 32.00m-33.00m CARB. SEDS EVENLY SORTED MEDIUM GRAIN SEDJMENTATION 28.00m-40.00m DARK CARB SEDAMENTS MED GRAIN POOR/SORTED 40.00m-42.00m LIGHT BROWN CARB. SEDS, FINE GRAIN WELL SORTED 40.00m-56.00m QUARTZ PEBBLES RANGING FROM 2 MM TO 4 MM AND CARB SILTS	0.00m-50.00m INNER LINING - CASING = Pvc 50.00m-56.00m INNER LINING - SCREEN = Pvc 0.00m-56.00m OUTER LINING - GRAVEL = Gravel	Levels	50.00m-56.00m Chert	20/11/1982	1139 m	West
WRK979887							1139 m	West
WRK052747	Irrigation	0.00m-2.00m TOP SOIL 2.00m-7.00m GRAVEL 7.00m-25.00m GREY CLAY 25.00m-26.00m COAL 26.00m-30.00m GRAVEL	0.00m-25.00m INNER LINING - CASING = Pvc 25.00m-30.00m INNER LINING - SCREEN = Stainless Steel 9.00m-21.00m OUTER LINING - GRAVEL = Cement			29/07/2009	1156 m	West
319777	Sec Bores (Use Unidentified)					02/07/1946	1169 m	West
306202	Non Groundwater					26/05/1983	1170 m	East
WRK979212						01/07/2008	1284 m	West
306206	Non Groundwater					30/05/1983	1334 m	East
306209	Non Groundwater					01/06/1983	1360 m	North East
306185	Non Groundwater					12/05/1983	1371 m	East
WRK052127	Irrigation	0.00m-2.00m TOP SOIL 2.00m-4.00m CLAY 4.00m-8.00m COBBLES 8.00m-13.00m COAL 13.00m-17.00m SAND 17.00m-23.00m COAL 23.00m-30.00m SAND & GRAVEL	0.00m-23.00m INNER LINING - CASING = Pvc 23.00m-30.00m INNER LINING - SCREEN = Stainless Steel 8.00m-10.00m OUTER LINING - GRAVEL = Cement			16/06/2009	1473 m	West
306208	Non Groundwater					31/05/1983	1496 m	North East
WRK988608							1530 m	West
WRK989794		0.00m-2.00m TOP SOIL 2.00m-4.00m CLAY 4.00m-8.00m COBBLES 8.00m-13.00m COAL 13.00m-17.00m SAND 17.00m-23.00m COAL 23.00m-30.00m SAND & GRAVEL	0.00m-23.00m INNER LINING - CASING = Pvc 23.00m-30.00m INNER LINING - SCREEN = Stainless Steel 8.00m-10.00m OUTER LINING - GRAVEL = Cement 10.00m-30.00m OUTER LINING - GRAVEL = Gravel			16/06/2009	1530 m	West

Bore Id	Use Type	Drillers Log	Construction	Latest Water Levels	Geology	Completed Date	Dist (m)	Dir
146754	Groundwater Investigation	0.00m-5.50m CLAY, SILT ORANGE RED BROWN 5.50m-6.50m GRAVEL AND RIVER ROCKS	-0.50m-1.50m INNER LINING - CASING = Pvc Class 18 1.50m-6.50m INNER LINING - SCREEN = Pvc Class 18 0.00m-0.50m OUTER LINING - GRAVEL = Cement 0.50m-1.50m OUTER LINING - GRAVEL = Bentonite 1.50m-0.00m OUTER LINING - GRAVEL = Seal		1.50m-6.50m Gravel	26/03/2001	1536 m	West
146753	Groundwater Investigation	0.00m-5.50m CLAY, SILT ORANGE RED BROWN 5.50m-6.50m GRAVEL AND RIVER ROCKS	-0.50m-1.50m INNER LINING - CASING = Pvc Class 18 1.50m-6.50m INNER LINING - SCREEN = Pvc Class 18 0.00m-0.50m OUTER LINING - GRAVEL = Cement 0.50m-1.50m OUTER LINING - GRAVEL = Bentonite 1.50m-0.00m OUTER LINING - GRAVEL = Seal		1.50m-6.50m Gravel	26/03/2001	1551 m	West
60513	Domestic, Stock	0.00m-7.60m CLAY 7.60m-20.00m MUDSTONE 20.00m-70.00m SLATE 70.00m-196.00m SLATE VERY HARD	-0.15m-70.10m INNER LINING - CASING = Not Known 70.00m-196.00m INNER LINING - SCREEN = Not Known		70.00m- 196.00m	23/02/1990	1551 m	North East
306207	Non Groundwater					31/05/1983	1662 m	North East
306203	Non Groundwater					26/05/1983	1746 m	East
146752	Groundwater Investigation	0.00m-5.50m CLAY, SILT ORANGE RED BROWN 5.50m-6.50m GRAVEL AND RIVER ROCKS	-0.05m-1.50m INNER LINING - CASING = Pvc Class 18 1.50m-6.50m INNER LINING - SCREEN = Pvc Class 18 0.00m-0.50m OUTER LINING - GRAVEL = Cement 0.50m-1.50m OUTER LINING - GRAVEL = Bentonite 1.50m-0.00m OUTER LINING - GRAVEL = Seal		1.50m-6.50m Gravel	26/03/2001	1756 m	West
146747	Groundwater Investigation	0.00m-5.50m C;AY, SILT ORANGE RED BROWN 5.50m-6.50m GRAVEL AND RIVER ROCKS	-0.05m-1.50m INNER LINING - CASING = Pvc Class 18 1.50m-6.50m INNER LINING - SCREEN = Pvc Class 18 0.00m-0.50m OUTER LINING - GRAVEL = Cement 0.50m-1.50m OUTER LINING - GRAVEL = Bentonite 1.50m-0.00m OUTER LINING - GRAVEL = Seal		1.50m-6.50m Gravel	26/03/2001	1795 m	West
306315	Non Groundwater					28/10/1981	1823 m	North East
306184	Non Groundwater					11/05/1983	1860 m	East
326004	Non Groundwater					31/12/1944	1895 m	West
326003	Non Groundwater					31/12/1944	1983 m	West

Boreholes WMIS Data Custodian: State Government Victoria - Dept of Environment, Land, Water & Planning Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Groundwater Boreholes

124 Hopetoun Park, Hopetoun Park, VIC 3188

Boreholes (Earth Resources Database)

Boreholes from the Earth Resources dataset, within the dataset buffer:

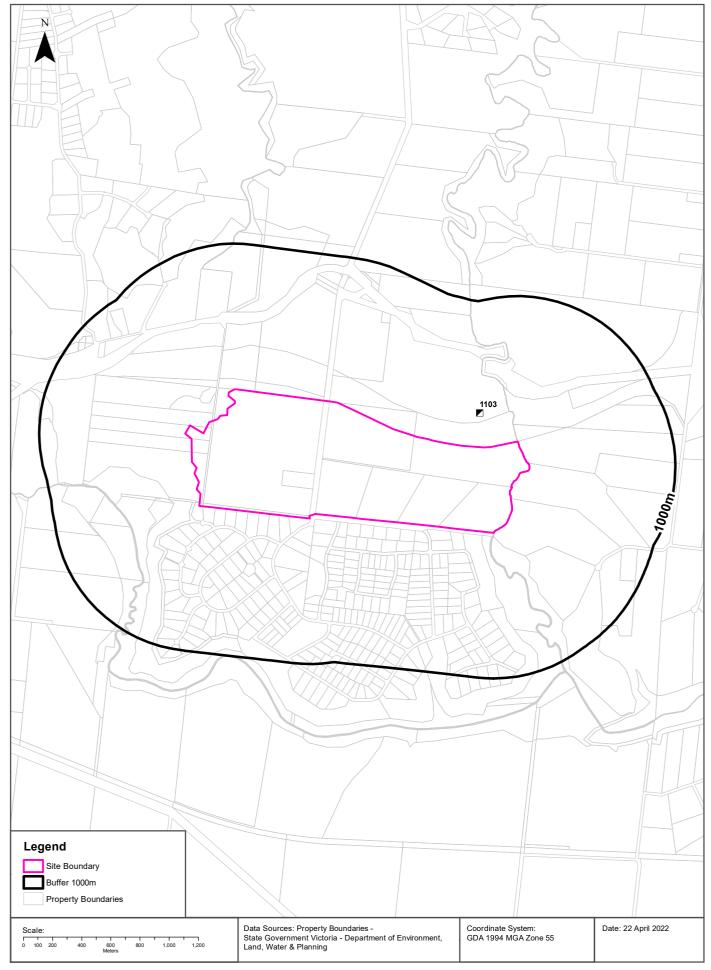
Bore Id	Bore Type	Company	Usage	Method	Status	Drill Date	Depth	Elevation	Accuracy (m)	Dist (m)	Dir
60484		Private Individual/Corporati on				31/12/1958	3.65		300	711m	North East
60509		Private Individual/Corporati on		Air Percussion/Air Rotary	Abandoned	22/08/1987	55.00		100	738m	East
60507		Private Individual/Corporati on		Air Percussion/Air Rotary	Abandoned	01/07/1984	50.00		100	830m	East
306316		Private Individual/Corporati on		Rotary (diamond/drag bit)		09/03/1984	97.00	135.00	300	974m	East
306201		Department of Manufacturing & Industry Development		Mechanical Auger		25/05/1983	4.20	131.40	100	1022 m	East
943752		CRA Exploration Pty Ltd		Rotary mud drilling	Completed	06/03/1984	169.43	111.86	110	1089 m	East
306186		Department of Manufacturing & Industry Development		Mechanical Auger		12/05/1983	4.00	129.30	100	1115m	East
306202		Department of Manufacturing & Industry Development		Mechanical Auger		26/05/1983	4.00	136.70	100	1169 m	East
319777		State Electricity Commission of Victoria				02/07/1946	40.80	95.00	10	1171 m	West
306206		Department of Manufacturing & Industry Development		Mechanical Auger		30/05/1983	4.25	143.00	100	1332 m	East
306209		Department of Manufacturing & Industry Development		Mechanical Auger		01/06/1983	3.80	159.00	100	1359 m	North East
306185		Department of Manufacturing & Industry Development		Mechanical Auger		12/05/1983	4.25	128.60	100	1370 m	East
79210		Private Individual/Corporati on	Irrigation	Rotary (diamond/drag bit)		20/11/1982	56.00		100	1381 m	West
306208		Department of Manufacturing & Industry Development		Mechanical Auger		31/05/1983	4.25	160.00	100	1495 m	North East
79214		Private Individual/Corporati on	Irrigation	Percussion (cable)		17/05/1984	36.57		100	1520 m	West
306207		Department of Manufacturing & Industry Development		Mechanical Auger		31/05/1983	4.25	147.30	100	1661 m	North East
306203		Department of Manufacturing & Industry Development		Mechanical Auger		26/05/1983	3.10	140.00	100	1745 m	East
306315		Private Individual/Corporati on		Rotary (diamond/drag bit)		28/10/1981	86.00		300	1822 m	North East

Bore Id	Bore Type	Company	Usage	Method	Status	Drill Date	Depth	Elevation	Accuracy (m)	Dist (m)	Dir
942634		CRA Exploration Pty Ltd		Rotary mud drilling	Completed	28/10/1981	86.00	148.54	25	1822 m	North East
306184		Department of Manufacturing & Industry Development		Mechanical Auger		11/05/1983	3.05	123.10	100	1858 m	East
326004		Department of Manufacturing & Industry Development				31/12/1944	14.33	86.26	10	1895 m	West
326003		Department of Manufacturing & Industry Development				31/12/1944	22.86	120.00	10	1984 m	West

Boreholes Earth Resources Data Source: © The State of Victoria, Department of Economic Development, Jobs, Transport and Resources 2015. Creative Commons Attribution 3.0 Australia

Boreholes (Federation University)

Boreholes from the Federation University Australia dataset, within the dataset buffer:


Bore Id	Authority	Туре	Uses	Initial TD	Log	Dist (m)	Dir
S9032787/1		Groundwater			D: 0.000m-1.000m Silty Top Soil D: 1.000m-11.000m Silty Clay D: 11.000m-18.000m Sand D: 18.000m-24.000m Gravel D: 24.000m-30.000m Grey Clay	757m	North West
S9034040/1		Groundwater	Domestic and Stock		D: 1.000m-2.000m Sandy Topsoil D: 2.000m-5.000m Silty Clay D: 6.000m-10.000m Heavy Gravels D: 10.000m-11.000m Silty Clay D: 11.000m-15.000m Sands & Gravels	798m	North West
79214		Groundwater	Irrigation		D: 0.000m-4.300m Loam D: 4.300m-8.500m Gravel Old Bed D: 8.500m-9.800m Coal D: 9.800m-17.100m Sand Soupy D: 17.100m-17.700m Coal D: 17.700m-18.900m Coal D: 18.900m-24.400m Coarse Sand & Coal D: 24.400m-36.600m Medium Sand	1023 m	West
79210		Groundwater	Irrigation		D: 0.000m-2.000m Dry Light Brown Seds D: 2.000m-4.000m Moist Light Brown Clays Sand Sediments D: 4.000m-6.000m Gre Clays And Seds (High Clay) D: 6.000m-8.000m Grey Seds Low Clay Content .23 Metres Low/Sph Round And Ang D: 8.000m-10.000m Up To .05 Metre Low/Sph Round And Ang Pebbles D: 10.000m-14.000m Coal And Angular Quartz .08 Metre Stone D: 14.000m-16.000m Coal (Dense) And Ang Quartz D: 16.000m-18.000m Coal (Dense) Very Little Stone D: 18.000m-20.000m Coal D: 20.000m-22.000m Carb. Coarse Grain Seds D: 22.000m-24.000m Coal And Seds D: 24.000m-26.000m Coal And Seds D: 24.000m-28.000m Coal And Seds D: 24.000m-32.000m Coal And Seds D: 28.000m-32.000m Coal And Seds 1 Mm Ang Pebs D: 32.000m-38.000m Coal And Seds 1 Mm Ang Pebs D: 32.000m-38.000m Coal Seds Evenly Sorted Medium Grain D: 38.000m-40.000m Dark Carb Sedaments Med Grain Poor/Sorted D: 40.000m-42.000m Quartz Pebbles Ranging From 2 Mm To 4 Mm And Carb Silts	1139m	West
S9030095/1		Groundwater				1139m	West
WRK052747		Groundwater	Irrigation		D: 0.000m-2.000m Top Soil D: 2.000m-7.000m Gravel D: 7.000m-25.000m Grey Clay D: 25.000m-26.000m Coal D: 26.000m-30.000m Gravel	1156m	West

Bore Id	Authority	Туре	Uses	Initial TD	Log	Dist (m)	Dir
319777	State Electricity Commission (1919 - 1993)		SEC Bores (Use unidentified)		G: $0.000m$ -6.400m Silt G: $6.400m$ -7.900m Gravel G: $7.900m$ -9.100m C = , Gdse = , H = , N = , Volatiles = 47.3 G: $7.900m$ -10.700m Inferior Coal G: $9.100m$ -10.700m C = , Gdse = , H = , N = , Volatiles = 45.5 G: $10.700m$ -12.200m Coal Brown G: $10.700m$ -12.200m C = , Gdse = , H = , N = , Volatiles = 45.9 G: $12.200m$ -16.500m Inferior Coal G: $12.200m$ -13.700m C = , Gdse = , H = , N = , Volatiles = 44.8 G: $16.500m$ -18.000m Coarse Sand G: $18.000m$ -21.900m Inferior Coal G: $18.000m$ -21.900m G = , Gdse = , H = , N = , Volatiles = 43.9 G: $21.900m$ -25.000m Brown Clay G: $25.000m$ -40.800m Sand & Gravel	1169m	West
S9029439/1		Groundwater				1284 m	West
S9036227/1		Groundwater				1530 m	West
S9037104/1		Groundwater			D: 0.000m-2.000m Top Soil D: 2.000m-4.000m Clay D: 4.000m-8.000m Cobbles D: 8.000m-13.000m Coal D: 13.000m-17.000m Sand D: 17.000m-23.000m Coal D: 23.000m-30.000m Sand & Gravel	1530 m	West
146754		Groundwater	Groundwater Investigation		D: 0.000m-5.500m Clay D: 5.500m-6.500m Gravel And River Rocks	1536 m	West
146753		Groundwater	Groundwater Investigation		D: 0.000m-5.500m Clay D: 5.500m-6.500m Gravel And River Rocks	1551 m	West
146752		Groundwater	Groundwater Investigation		D: 0.000m-5.500m Clay D: 5.500m-6.500m Gravel And River Rocks	1756 m	West
146747		Groundwater	Groundwater Investigation		D: 0.000m-5.500m C;Ay D: 5.500m-6.500m Gravel And River Rocks	1795 m	West
326004	Victorian Mines Department (1909 - 1977)		Non Groundwater		D: 0.000m-0.300m Loam D: 0.300m-1.800m Grey Clay D: 1.800m-4.900m Grey And Yellow Clay D: 4.900m-5.200m Sand And Gravel D: 5.200m-7.900m Drift Sand And Gravel D: 7.900m-12.800m Brown Coal D: 12.800m-13.100m Ligneous Clay D: 13.100m-14.300m Yellow Clay	1895 m	West
326003	Victorian Mines Department (1909 - 1977)		Non Groundwater		D: 0.000m-0.300m Loam D: 0.300m-0.600m Red Clay D: 0.600m-1.500m Basalt D: 1.500m-6.400m Clay, Gravel, And Basalt D: 6.400m-11.900m Yellow Clay D: 11.900m-12.200m Ligneous Clay D: 12.200m-21.300m Brown Coal D: 21.300m-21.900m Ligneous Clay D: 21.900m-22.900m Sandy Clay	1983 m	West

Boreholes FedUni Data Source: © Federation University Australia

Historical Mining Activity - Shafts

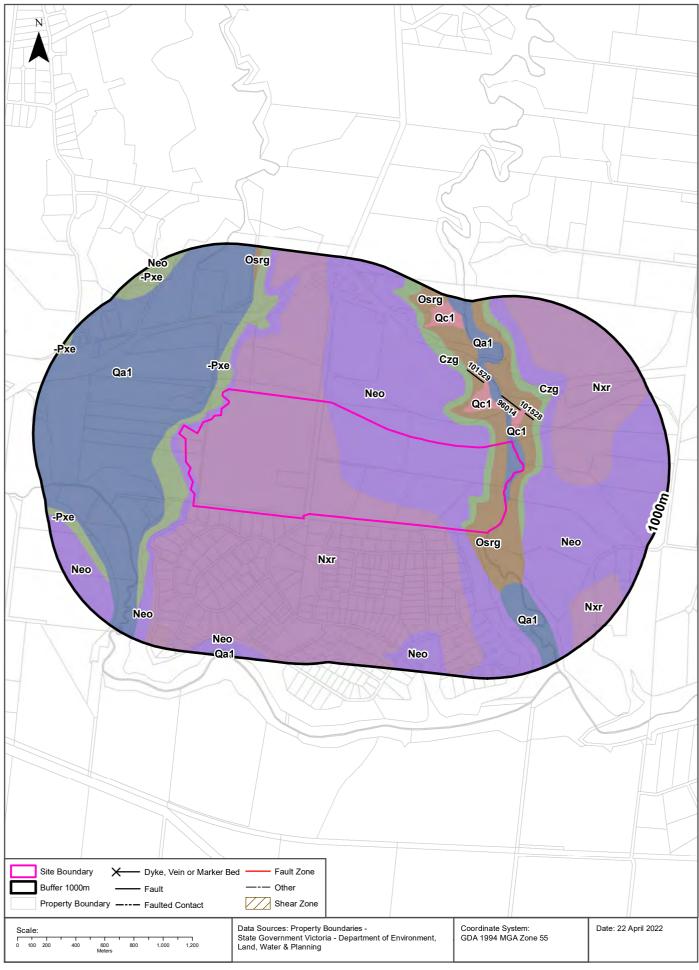
Historical Mining Activity - Shafts

124 Hopetoun Park, Hopetoun Park, VIC 3188

Historical Mining Activity - Shafts

Mine Shaft Locations were collected by a variety of methods from 1869 in some areas of the state, mainly concentrating in Ballarat and Bendigo. In places a shaft may be recorded multiple times with a different source. In cases where several shaft locations are shown close together (generally with separations less than stated position errors) and they have different sources, it is possible that one shaft has been mapped several times. In cases where several shaft locations are shown close together but they have the same information source, it is possible that each shaft location represents a different shaft on the ground.

Historical Mine Shafts within the dataset buffer:


Map Id	Name	Source	Depth (m)	Collar (ft)	Fill/Cap Method	Location Desc	Location Accuracy	Distance	Direction
1103	Sandstone Quarry	Heritage Inventory					10	235m	East

Historical Mining Activity Data Custodian: State Government Victoria - Dept of Economic Development, Jobs, Transport & Resources

Creative Commons 4.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/4.0/

Geology

Geology

124 Hopetoun Park, Hopetoun Park, VIC 3188

Geological Units 1:50,000

What are the Geological Units within the dataset buffer?

Symbol	Name	Description	Geological Age	Lithology	Distance	Direction
Nxr	Darley Gravel (Nxr): generic	Gravel, sand, silt: gravel red to pale colours; rounding and sorting moderate to good; moderately consolidated; massive to trough cross-bedded; gravel clasts of vein quartz, sandstone, basalt, ironstone in proportions that reflect the local source	Neogene to Pleistocene	gravel material (significant); sand (significant); silt material (significant)	Om	On-site
Neo	Newer Volcanic Group - basalt flows (Neo): generic	Olivine tholeiite, quartz tholeiite, basanite, basaltic icelandite, hawaiite, mugearite, minor scoria and ash, fluvial sediments: tholeiitic to alkaline; includes sheet flows and valley flows and intercalated gravel, sand, clay	Miocene to Holocene	alkali basalt (major proportion); tholeiitic basalt (major proportion); alluvium (minor proportion); tuff (minor proportion)	Om	On-site
Osrg	Riddell Sandstone Gisbornian(Osrg): generic	Sandstone, black shale, black and grey siltstone: sandstone thin to thick-bedded; turbiditic (Tae, Tabc, Tbc, Tc); shale commonly graptolitic; minor pebbel conglomerate with well-rounded pebbles; Gisbornian age.	Gisbornian to Gisbornian	shale (significant); siltstone (significant); conglomerate (minor proportion); sandstone (minor proportion)	Om	On-site
Czg	conglomerate and sandstone (Czg): generic	Conglomerate, quartz sandstone and siltstone: consolidated to commonly ferruginised; variably sorted; cross-bedding common	Paleocene to Pliocene	conglomerate (major proportion); siltstone (trace proportion); quartz arenite (significant)	Om	On-site
Qa1	alluvium(Qa1): generic	Gravel, sand, silt: variably sorted and rounded; generally unconsolidated; includes deposits of low terraces; alluvial floodplain deposits	Pleistocene to Holocene	gravel material (significant); sand (significant); silt material (significant)	Om	On-site
-Pxe	Werribee Formation (-Pxe): generic	Sand, silt, clay, gravel in variable proportions: generally white to pale grey; in part carbonaceous, pyritic; ferruginous bands common; contains Cinnamomum flora	Eocene to Miocene	sand (significant); silt material (significant); clay lithology (significant); gravel material (significant)	0m	On-site
Qc1	colluvium(Qc1): generic	Diamictite, gravel, sand, silt, clay, rubble: sorting variable, usually poor; generally poorly rounded; clasts locally sourced; includes channel deposits with better rounding and sorting	Pliocene to Holocene	diamictite (dominant); gravel material (significant); sand (significant); silt material (significant)	42m	East

Geology Data Custodian: State Government Victoria - Dept of Economic Development, Jobs, Transport & Resources Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Geology

124 Hopetoun Park, Hopetoun Park, VIC 3188

Geological Structures 1:50,000

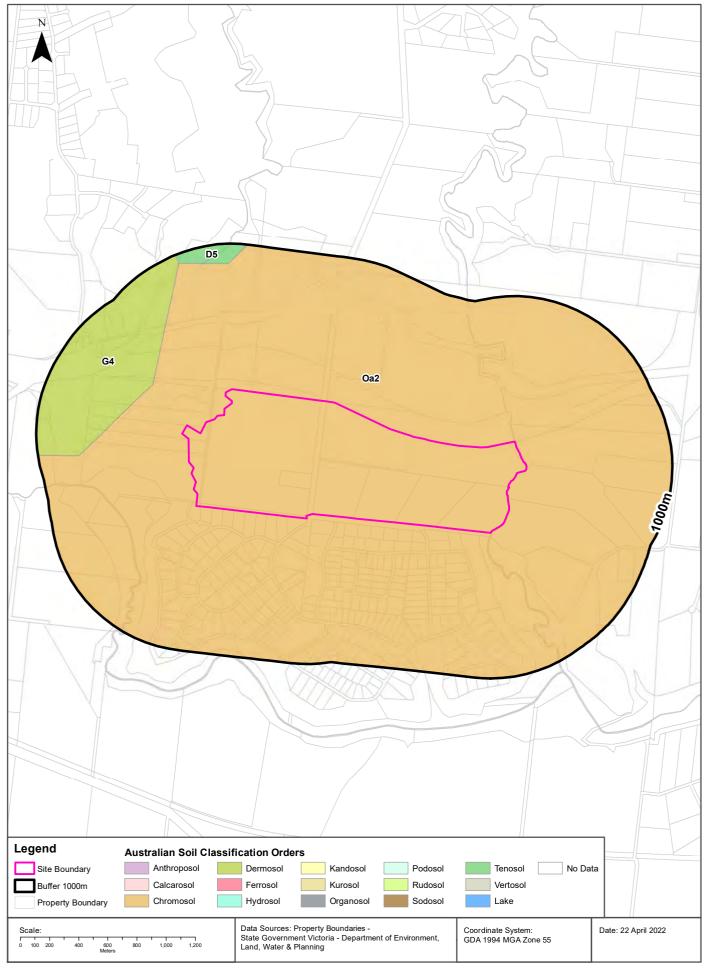
What are the Geological Faults or Faulted Contacts within the dataset buffer?

Map Id	Туре	Name	Contact	Positional Accuracy	Distance	Direction
101528	fault	Greendale fault		indefinite	210m	East
96014	fault	Greendale fault		indefinite	226m	East
101529	fault	Greendale fault		indefinite	437m	North East

What are the Dykes, Marker Beds and Veins within the dataset buffer?

Map Id	Туре	Name	Description	Positional Accuracy	Distance	Direction
N/A	No records in buffer					

Geological Structures 1:250,000


What are the Shear Zones within the dataset buffer?

Map Id	Туре	Name	Description	Positional Accuracy	Distance	Direction
N/A	No records in buffer					

Geology Data Custodian: State Government Victoria - Dept of Economic Development, Jobs, Transport & Resources Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

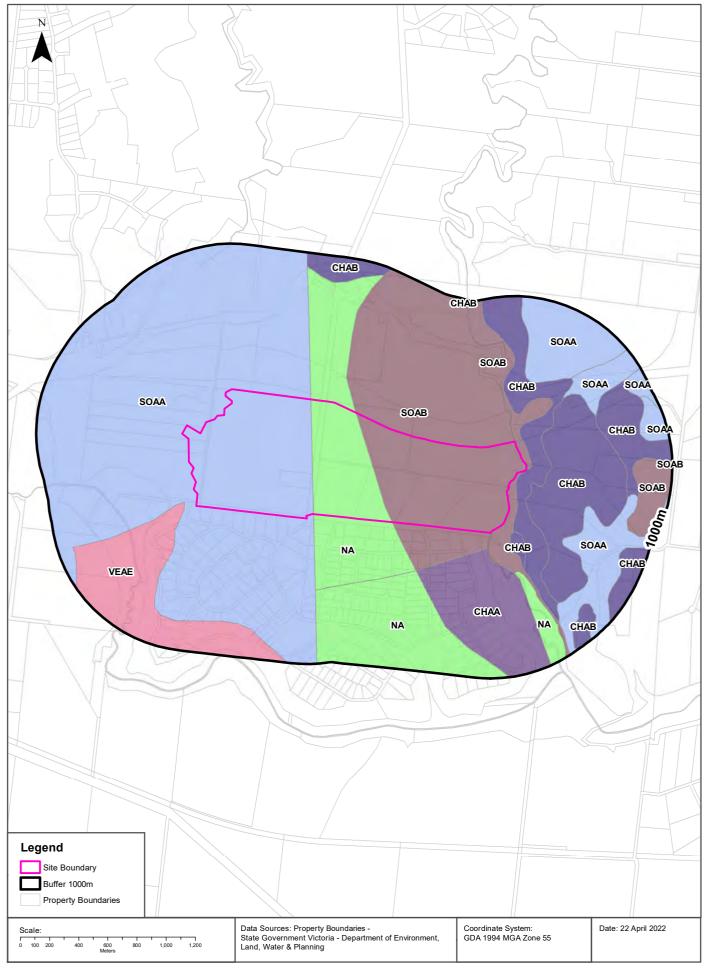
Atlas of Australian Soils

Soils

124 Hopetoun Park, Hopetoun Park, VIC 3188

Atlas of Australian Soils

Soil mapping units and Australian Soil Classification orders within the dataset buffer:


Map Unit Code	Soil Order	Map Unit Description	Distance	Direction
Oa2	Chromosol	Dissected plateaux at low elevation: plains of hard alkaline red soils (Dr2.13) often in gilgai micro- association with dark cracking clays (Ug5.1), and grey and brown cracking clays (Ug5.2 and Ug5.3), small areas of other soils such as (Dr2.33), (Dy3.43), and (Dd1.I); also with (1) low, broad, sprawling stony rises of (Dr2.13), (2) low rounded hills of various (D) soils such as (Db1.23) with boulder strewn slopes, and (3) incised, often gorge-like, stream valleys of undescribed soils.	Om	On-site
G4	Dermosol	Plains: floodplains and low terraces of various friable loamy soils (Um6), friable earths (Gn4), and other soils including (Dd) and (Dy); area has a relatively high water-table. Remnants of higher terraces of hard alkaline red soils (Dr2.23) occur also.	369m	North West
D5	Tenosol	Rugged hills at low elevation: rugged steep hilly areas of shallow grey- brown sandy soils (Uc6. 11) with many rock outcrops, in association with shallow forms of hard red soils (Dr2.2) and shallow forms of hard yellow mottled soils (Dy3.2); dissected by deeply incised stream valleys of un- described soils.	860m	North West

Atlas of Australian Soils Data Source: CSIRO

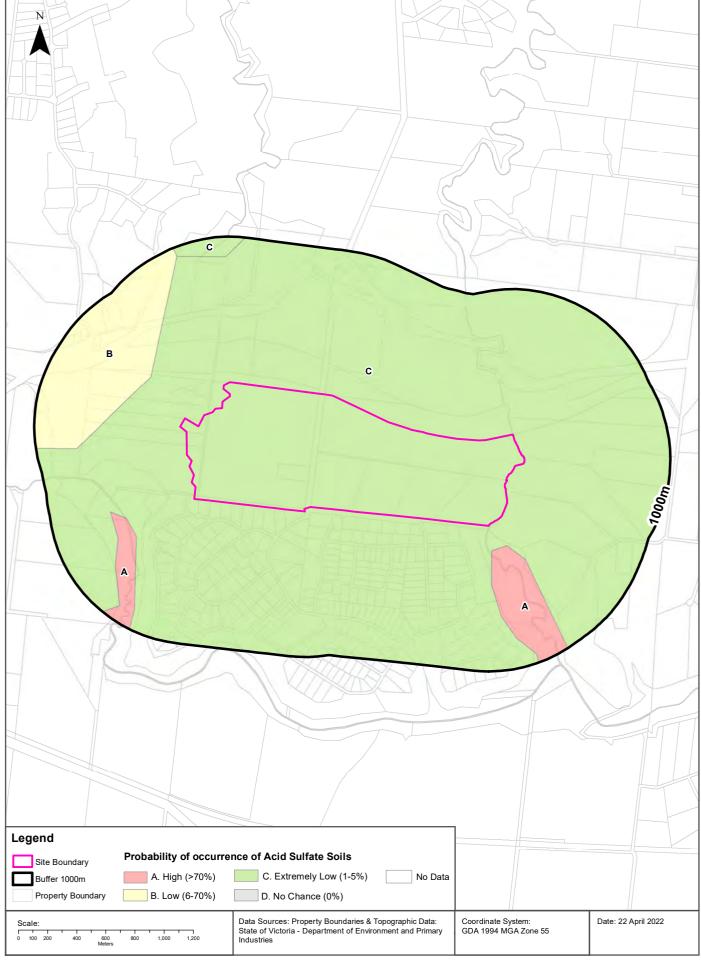
 $Creative\ Commons\ 4.0\ \ \textcircled{C}\ Commonwealth\ of\ Australia\ http://creativecommons.org/licenses/by/4.0/au/deed.en$

Victorian Soil Type Mapping 124 Hopetoun Park, Hopetoun Park, VIC 3188

Soils

124 Hopetoun Park, Hopetoun Park, VIC 3188

Victorian Soil Type Mapping


Victorian Soil Types within the dataset buffer:

Symbol	Description	Distance	Direction
SOAA	Red Sodosols	0m	On-site
NA	Unassigned	0m	On-site
SOAB	Brown Sodosols	0m	On-site
CHAB	Brown Chromosols	0m	East
VEAE	Black Vertosols	83m	South West
CHAA	Red Chromosols	111m	South East

Victorian Soil Type Mapping Data Source: Department of Economic Development, Jobs, Transport and Resources Creative Commons Attribution 4.0 International © Commonwealth of Australia http://creativecommons.org/licenses/by/4.0/

Atlas of Australian Acid Sulfate Soils

Acid Sulfate Soils

124 Hopetoun Park, Hopetoun Park, VIC 3188

Atlas of Australian Acid Sulfate Soils

Atlas of Australian Acid Sulfate Soil categories within the dataset buffer:

Class	Description	Distance	Direction
С	Extremely low probability of occurrence. 1-5% chance of occurrence with occurrences in small localised areas.	0m	On-site
Α	High Probability of occurrence. >70% chance of occurrence.	168m	South East
В	Low Probability of occurrence. 6-70% chance of occurrence.	370m	North West

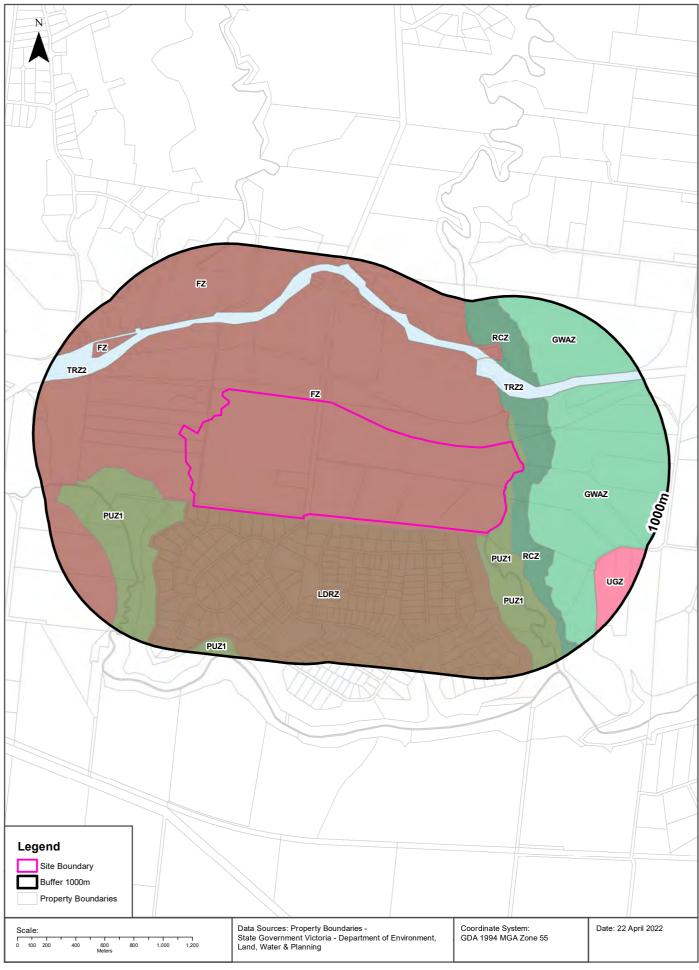
Atlas of Australian Acid Sulfate Soils Data Source: CSIRO Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Acid Sulfate Soils

124 Hopetoun Park, Hopetoun Park, VIC 3188

Coastal Acid Sulfate Soils

Coastal Acid Sulfate Soil types within the dataset buffer:


Coastal Acid Sulfate Soil Types	Distance	Direction
No records in buffer		

Coastal Acid Sulfate Data Custodian: State Government Victoria - Dept of Environment, Land, Water & Planning Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Planning Zones

124 Hopetoun Park, Hopetoun Park, VIC 3188

Planning

124 Hopetoun Park, Hopetoun Park, VIC 3188

Planning Zones

Planning zones within the dataset buffer:

Zone Code	Description	Distance	Direction
FZ	FARMING ZONE	0m	On-site
LDRZ	LOW DENSITY RESIDENTIAL ZONE	0m	South
PUZ1	PUBLIC USE ZONE - SERVICE AND UTILITY	0m	South East
RCZ	RURAL CONSERVATION ZONE	1m	East
PUZ1	PUBLIC USE ZONE - SERVICE AND UTILITY	25m	West
GWAZ	GREEN WEDGE A ZONE	113m	East
TRZ2	TRANSPORT ZONE 2 - PRINCIPAL ROAD NETWORK	303m	East
RCZ	RURAL CONSERVATION ZONE	412m	North East
GWAZ	GREEN WEDGE A ZONE	430m	North East
TRZ2	TRANSPORT ZONE 2 - PRINCIPAL ROAD NETWORK	444m	North West
FZ	FARMING ZONE	514m	North West
UGZ	URBAN GROWTH ZONE	701m	South East
FZ	FARMING ZONE	706m	North West

Planning Zone Data Custodian: State Government Victoria - Dept of Environment, Land, Water & Planning Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Planning Overlays

124 Hopetoun Park, Hopetoun Park, VIC 3188

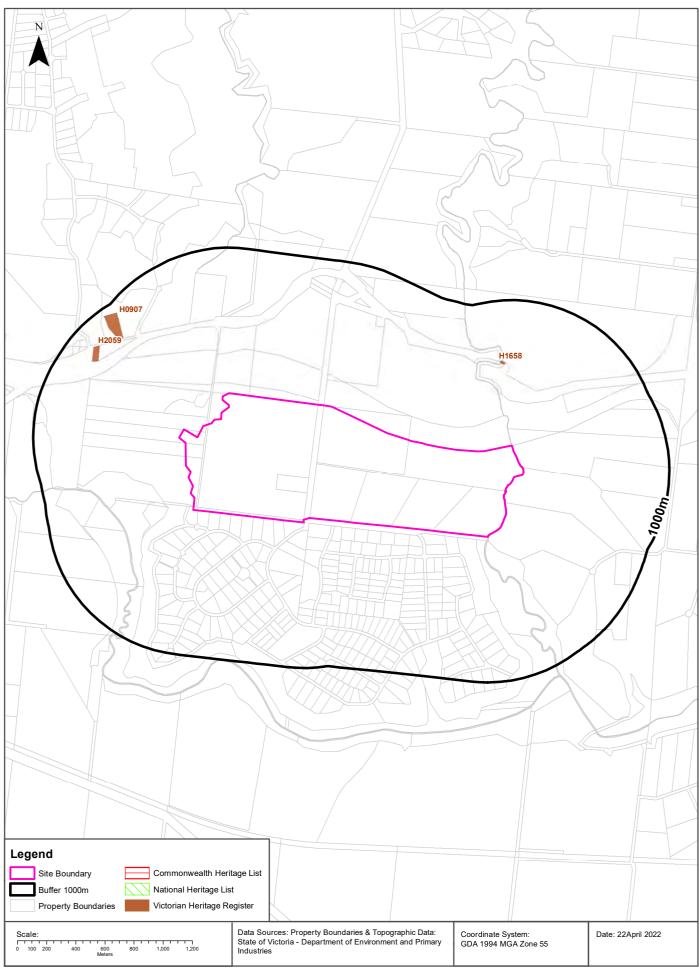
Planning

124 Hopetoun Park, Hopetoun Park, VIC 3188

Planning Overlays

Planning overlays within the dataset buffer:

Zone Code	Description	Distance	Direction
DDO2	DESIGN AND DEVELOPMENT OVERLAY - SCHEDULE 2	0m	On-site
SLO1	SIGNIFICANT LANDSCAPE OVERLAY - SCHEDULE 1	0m	On-site
PAO1	PUBLIC ACQUISITION OVERLAY 1	Om	On-site
DPO2	DEVELOPMENT PLAN OVERLAY - SCHEDULE 2	0m	South
ESO2	ENVIRONMENTAL SIGNIFICANCE OVERLAY - SCHEDULE 2	0m	South East
ESO3	ENVIRONMENTAL SIGNIFICANCE OVERLAY - SCHEDULE 3	0m	North
PAO1	PUBLIC ACQUISITION OVERLAY 1	0m	East
ESO1	ENVIRONMENTAL SIGNIFICANCE OVERLAY - SCHEDULE 1	2m	North East
ESO8	ENVIRONMENTAL SIGNIFICANCE OVERLAY - SCHEDULE 8	48m	North West
ESO8	ENVIRONMENTAL SIGNIFICANCE OVERLAY - SCHEDULE 8	95m	West
DPO3	DEVELOPMENT PLAN OVERLAY - SCHEDULE 3	113m	East
DDO3	DESIGN AND DEVELOPMENT OVERLAY - SCHEDULE 3	184m	North West
ESO8	ENVIRONMENTAL SIGNIFICANCE OVERLAY - SCHEDULE 8	323m	West
ESO8	ENVIRONMENTAL SIGNIFICANCE OVERLAY - SCHEDULE 8	365m	West
ESO2	ENVIRONMENTAL SIGNIFICANCE OVERLAY - SCHEDULE 2	380m	West
ESO8	ENVIRONMENTAL SIGNIFICANCE OVERLAY - SCHEDULE 8	432m	North West
ESO8	ENVIRONMENTAL SIGNIFICANCE OVERLAY - SCHEDULE 8	439m	South West
ESO2	ENVIRONMENTAL SIGNIFICANCE OVERLAY - SCHEDULE 2	444m	North East
HO97	HERITAGE OVERLAY (HO97)	452m	North East
DPO3	DEVELOPMENT PLAN OVERLAY - SCHEDULE 3	465m	North East
DDO3	DESIGN AND DEVELOPMENT OVERLAY - SCHEDULE 3	514m	North West
HO9	HERITAGE OVERLAY (HO9)	559m	North East
HO148	HERITAGE OVERLAY (HO148)	565m	North East
HO12	HERITAGE OVERLAY (HO12)	572m	North East
ESO8	ENVIRONMENTAL SIGNIFICANCE OVERLAY - SCHEDULE 8	617m	West
SLO1	SIGNIFICANT LANDSCAPE OVERLAY - SCHEDULE 1	630m	West
DDO2	DESIGN AND DEVELOPMENT OVERLAY - SCHEDULE 2	706m	North West
PAO1	PUBLIC ACQUISITION OVERLAY 1	718m	North West
HO10	HERITAGE OVERLAY (HO10)	753m	North West
HO16	HERITAGE OVERLAY (HO16)	755m	North West
PAO1	PUBLIC ACQUISITION OVERLAY 1	771m	North West


Zone Code	Description	Distance	Direction
ESO8	ENVIRONMENTAL SIGNIFICANCE OVERLAY - SCHEDULE 8	797m	North West
HO83	HERITAGE OVERLAY (HO83)	861m	West
ESO8	ENVIRONMENTAL SIGNIFICANCE OVERLAY - SCHEDULE 8	891m	North West
HO147	HERITAGE OVERLAY (HO147)	896m	North West
PAO1	PUBLIC ACQUISITION OVERLAY 1	915m	East
ESO8	ENVIRONMENTAL SIGNIFICANCE OVERLAY - SCHEDULE 8	949m	West

Planning Overlay Data Custodian: State Government Victoria - Dept of Environment, Land, Water & Planning Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Heritage

124 Hopetoun Park, Hopetoun Park, VIC 3188

Heritage

124 Hopetoun Park, Hopetoun Park, VIC 3188

Commonwealth Heritage List

What are the Commonwealth Heritage List Items located within the dataset buffer?

Place Id	Name	Address	Place File No	Class	Status	Register Date	Distance	Direction
N/A	No records in buffer							

Heritage Data Source: Australian Government Department of the Environment and Energy - Heritage Branch Creative Commons 3.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/3.0/au/deed.en

National Heritage List

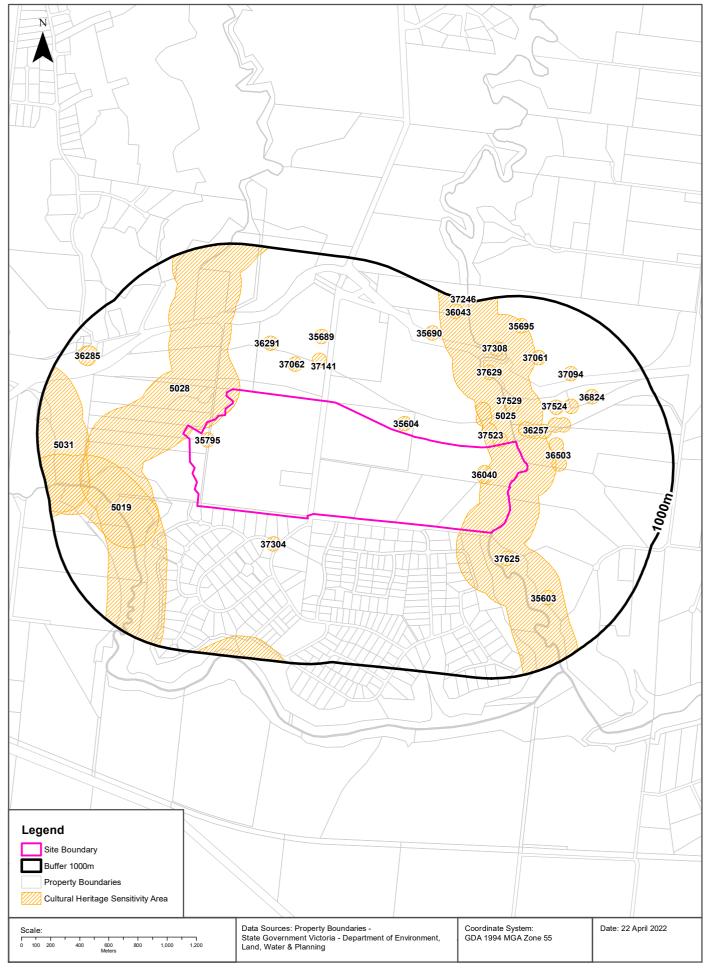
What are the National Heritage List Items located within the dataset buffer? Note. Please click on Place Id to activate a hyperlink to online website.

Place Id	Name	Address	Place File No	Class	Status	Register Date	Distance	Direction
N/A	No records in buffer							

Heritage Data Source: Australian Government Department of the Environment and Energy - Heritage Branch Creative Commons 3.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/3.0/au/deed.en

Victorian Heritage Register

What are the Victorian Heritage Register items located within the dataset buffer?:


VHR Number	Description	Distance	Direction
H1658	BRIDGE OVER DJERRIWARRH CREEK	559m	North East
H1658	BRIDGE OVER DJERRIWARRH CREEK	570m	North East
H0907	FORMER LEAHYS RESIDENCE	753m	North West
H2059	HOPETOUN CATHOLIC CEMETERY	755m	North West

Victorian Heritage Register Data Custodian: State Government Victoria - Dept of Environment, Land, Water & Planning Creative Commons Attribution 4.0 International © Commonwealth of Australia http://creativecommons.org/licenses/by/4.0/

Cultural Heritage Sensitivity

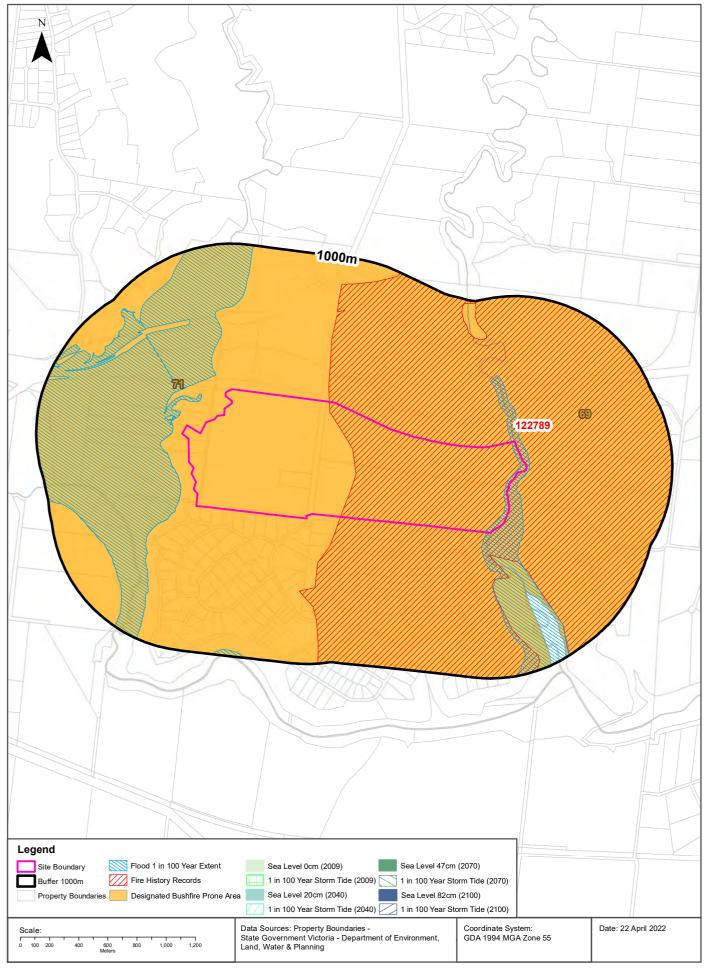
124 Hopetoun Park, Hopetoun Park, VIC 3188

Heritage

124 Hopetoun Park, Hopetoun Park, VIC 3188

Cultural Heritage Sensitivity

Areas of Cultural Heritage Sensitivity as specified in Division 3 of Part 2 in the Victorian Aboriginal Heritage Regulations 2018, within the dataset buffer:


36291 297m North West 37524 316m East 35689 389m North 37526 401m East 37629 453m North East 35603 536m South East 37061 548m North East 37094 551m North East 36824 557m East	Map Id	Distance	Direction
36040 0m On-site 35795 0m On-site 37523 0m On-site 35604 14m North East 35604 15m East 37304 150m South West 37625 153m South East 36603 168m East 37062 177m North West 37529 197m East 37141 224m North 5019 268m West 36291 316m East 37524 316m East 3689 389m North 37526 401m East 37629 453m North East 37603 536m South East 37604 536m South East 37081 54m North East 37094 55m East 37308 600m North East 5031 647m West 35690 666m North East 36955 748m	5025	0m	On-site
35795 0m On-site 37523 0m On-site 36604 14m North East 36257 61m East 37304 150m South West 37625 153m South East 36503 168m East 37062 177m North West 37529 197m East 37141 224m North 5019 268m West 36291 297m North West 37524 316m East 3689 North East 37629 453m North 37629 453m North East 37061 548m North East 37061 548m North East 37084 500m North East 37308 600m North East 5031 666m North East 35690 666m North East 36895 748m North East	5028	0m	On-site
37523 0m On-site 38604 14m North East 36257 61m East 37304 150m South West 37625 153m South East 38603 168m East 37062 177m North West 37529 197m East 37141 224m North 5019 268m West 36291 297m North West 37524 316m East 36889 389m North 37629 453m North East 37629 453m North East 37061 548m North East 37094 551m North East 37308 600m North East 5031 647m West 35690 666m North East 35695 748m North East 36285 77m North West	36040	0m	On-site
35604 14m North East 36257 61m East 37304 150m South West 37625 153m South East 36503 168m East 37062 177m North West 37529 197m East 37141 224m North 5019 268m West 36291 297m North West 37524 316m East 35689 389m North 37526 401m East 36003 536m South East 37061 548m North East 37094 551m North East 36824 577m East 37308 600m North East 5031 647m West 35695 748m North East 36285 777m North West	35795	0m	On-site
36257 61m East 37304 150m South West 37625 153m South East 36503 168m East 37062 177m North West 37529 197m East 37141 224m North 5019 268m West 36291 297m North West 37524 316m East 35689 389m North 37629 453m North East 35603 536m South East 37061 548m North East 37094 551m North East 36824 557m East 37308 600m North East 5031 647m West 35690 666m North East 35695 748m North East 36285 777m North West	37523	0m	On-site
37304 150m South West 37625 153m South East 36503 168m East 37062 177m North West 37529 197m East 37141 224m North 5019 268m West 36291 297m North West 37524 316m East 36689 389m North 37526 401m East 37629 453m North East 37601 548m North East 37094 551m North East 37884 600m North East 5031 647m West 35690 666m North East 35695 748m North East 36856 777m North West	35604	14m	North East
37625 153m South East 36503 168m East 37062 177m North West 37529 197m East 37141 224m North 5019 268m West 36291 297m North West 37524 316m East 35689 389m North 37629 453m North East 35603 536m South East 37061 548m North East 37094 551m North East 36824 557m East 37308 600m North East 5031 647m West 35695 748m North East 36285 777m North West	36257	61m	East
36503 168m East 37062 177m North West 37529 197m East 37141 224m North 5019 268m West 36291 297m North West 37524 316m East 35689 389m North 37629 453m North East 35603 536m South East 37061 548m North East 37094 551m North East 36824 557m East 37308 600m North East 5031 647m West 35690 666m North East 35695 748m North East 36285 777m North West	37304	150m	South West
37062 177m North West 37529 197m East 37141 224m North 5019 268m West 36291 297m North West 37524 316m East 35689 389m North 37526 401m East 37629 453m North East 37061 548m North East 37094 551m North East 36824 557m East 37308 600m North East 5031 647m West 35690 666m North East 35695 748m North East 36285 777m North West	37625	153m	South East
37529 197m East 37141 224m North 5019 268m West 36291 297m North West 37524 316m East 35689 North 37526 401m East 37629 453m North East 37061 548m North East 37094 551m North East 37308 600m North East 5031 647m West 35690 666m North East 35695 748m North East 36285 777m North West	36503	168m	East
37141 224m North 5019 268m West 36291 297m North West 37524 316m East 35689 389m North 37526 401m East 37629 453m North East 35603 536m South East 37061 548m North East 37994 551m North East 36824 557m East 37308 600m North East 5031 647m West 35690 666m North East 35695 748m North East 36285 777m North West	37062	177m	North West
5019 268m West 36291 297m North West 37524 316m East 35689 389m North 37526 401m East 37629 453m North East 35603 536m South East 37094 551m North East 36824 557m East 37308 600m North East 5031 647m West 35690 666m North East 36695 748m North East 36285 777m North West	37529	197m	East
36291 297m North West 37524 316m East 35689 389m North 37526 401m East 37629 453m North East 35603 536m South East 37061 548m North East 37094 551m North East 36824 557m East 37308 600m North East 5031 647m West 35690 666m North East 35695 748m North East 36285 777m North West	37141	224m	North
37524 316m East 35689 389m North 37526 401m East 37629 453m North East 35603 536m South East 37061 548m North East 37094 551m North East 36824 557m East 37308 600m North East 5031 647m West 35690 666m North East 35695 748m North East 36285 777m North West	5019	268m	West
35689 389m North 37526 401m East 37629 453m North East 35603 536m South East 37061 548m North East 37094 551m North East 36824 557m East 37308 600m North East 5031 647m West 35690 666m North East 35695 748m North East 36285 777m North West	36291	297m	North West
37526 401m East 37629 453m North East 35603 536m South East 37061 548m North East 37094 551m North East 36824 557m East 37308 600m North East 5031 647m West 35690 666m North East 35695 748m North West 36285 777m North West	37524	316m	East
37629 453m North East 35603 536m South East 37061 548m North East 37094 551m North East 36824 557m East 37308 600m North East 5031 647m West 35690 666m North East 35695 748m North East 36285 777m North West	35689	389m	North
35603 536m South East 37061 548m North East 37094 551m North East 36824 557m East 37308 600m North East 5031 647m West 35690 666m North East 35695 748m North East 36285 777m North West	37526	401m	East
37061 548m North East 37094 551m North East 36824 557m East 37308 600m North East 5031 647m West 35690 666m North East 35695 748m North East 36285 777m North West	37629	453m	North East
37094 551m North East 36824 557m East 37308 600m North East 5031 647m West 35690 666m North East 35695 748m North East 36285 777m North West	35603	536m	South East
36824 557m East 37308 600m North East 5031 647m West 35690 666m North East 35695 748m North East 36285 777m North West	37061	548m	North East
37308 600m North East 5031 647m West 35690 666m North East 35695 748m North East 36285 777m North West	37094	551m	North East
5031 647m West 35690 666m North East 35695 748m North East 36285 777m North West	36824	557m	East
35690 666m North East 35695 748m North East 36285 777m North West	37308	600m	North East
35695 748m North East 36285 777m North West	5031	647m	West
36285 777m North West	35690	666m	North East
	35695	748m	North East
36043 852m North East	36285	777m	North West
	36043	852m	North East
37246 986m North East	37246	986m	North East

Cultural Heritage Sensitivity Data Custodian: State Government Victoria - Department of Premier and Cabinet Creative Commons Attribution 4.0 International © Commonwealth of Australia http://creativecommons.org/licenses/by/4.0/

Natural Hazards

124 Hopetoun Park, Hopetoun Park, VIC 3188

Natural Hazards

124 Hopetoun Park, Hopetoun Park, VIC 3188

Bushfire Prone Areas

What are the designated bushfire prone areas within the dataset buffer?

Map ID	Feature	Plan No	LGA	Gazetted Date	Distance	Direction
71	Designated Bushfire Prone Area	LEGL./20-485	MOORABOOL	25/01/2021	0m	On-site
69	Designated Bushfire Prone Area	LEGL./21-585	MELTON	06/07/2021	0m	On-site

Bushfire Prone Area Data Custodian: State Government Victoria - Dept of Transport, Planning & Local Infrastructure Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Fire History

What are the fire history records of fires primarily on public land, within the dataset buffer?

Map Id	Fire Type	Fire Key	Season	Fire No	Fire Name	Treatment	Fire Cover	Start Date	Dist (m)	Direction
122789	BUSHFIRE	W198599999	1985	999	Melton	FIRE			0m	On-site

Fire History Data Custodian: State Government Victoria - Dept of Environment, Land, Water & Planning Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Flood - 1 in 100 year modelled flood extent

What 1 in 100 year flood extent features exist within the dataset buffer?

Feature	Source	Method	Scale	Modified Date	Distance	Direction
100 Year Flood Outline	Unknown	No contours & some flood info		01/01/2000	0m	On-site
100 Year Flood Outline	Melbourne Water	Modelled		03/10/2013	66m	West

Flood Data Custodian: State Government Victoria - Dept of Environment, Land, Water & Planning Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

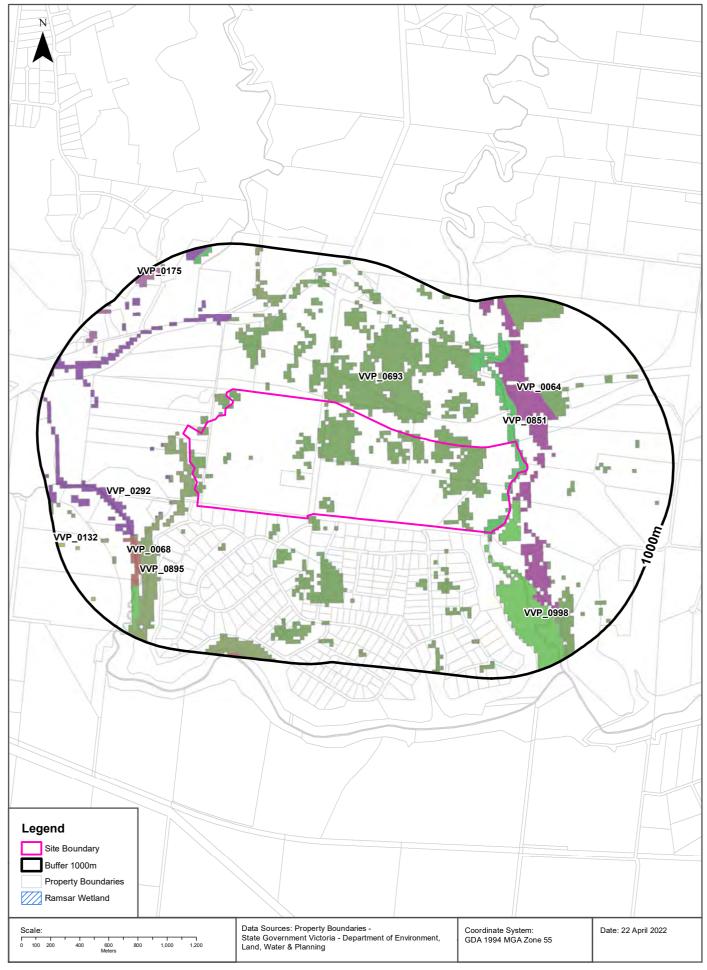
Natural Hazards

124 Hopetoun Park, Hopetoun Park, VIC 3188

Victorian Coastal Inundation Sea Level Rise

What coastal inundation sea level rise features exist within the dataset buffer?

Description	Distance	Direction
No records in buffer		


Victorian Coastal Inundation Sea Level Rise Data Custodian: State Government Victoria - Dept of Environment, Land, Water & Planning

Creative Commons Attribution 4.0 International © Commonwealth of Australia http://creativecommons.org/licenses/by/4.0/

Ecological Constraints - Native Vegetation 2005 & Ramsar Wetlands

124 Hopetoun Park, Hopetoun Park, VIC 3188

Ecological Constraints

124 Hopetoun Park, Hopetoun Park, VIC 3188

Native Vegetation (Modelled 2005 Ecological Vegetation Classes)

What native vegetation exists within the dataset buffer?

Veg Code	EVC Name	EVCCode	Group	Subgroup	Bioregion	Conservation Status	Geographic Occurance	Dist	Dir
VVP_0851	Stream Bank Shrubland	0851	Riparian Scrubs or Swampy Scrubs and Woodlands		Victorian Volcanic Plain	Endangered	Naturally Restricted	0m	On-site
VVP_0998	Water Body - man- made	0998	No native vegetation recorded		Victorian Volcanic Plain	Not Applicable	not applicable	0m	On-site
VVP_0693	Plains Woodland/Plains Grassland Mosaic	0693	Plains Woodlands or Forests	Poorly-draining	Victorian Volcanic Plain	Endangered	not applicable	0m	On-site
VVP_0064	Rocky Chenopod Woodland	0064	Box Ironbark Forests or dry/lower fertility Woodlands		Victorian Volcanic Plain	Vulnerable	Minor	0m	On-site
VVP_0895	Escarpment Shrubland	0895	Plains Woodlands or Forests	Freely-draining	Victorian Volcanic Plain	Endangered	Naturally Restricted	6m	West
VVP_0292	Red Gum Swamp	0292	Wetlands	Freshwater	Victorian Volcanic Plain	Endangered	Naturally Restricted	149m	West
VVP_0068	Creekline Grassy Woodland	0068	Riverine Grassy Woodlands or Forests	Creekline and/or swampy	Victorian Volcanic Plain	Endangered	Common	478m	South West
VVP_0132	Plains Grassland	0132	Plains Grasslands and Chenopod Shrublands	Clay soils	Victorian Volcanic Plain	Endangered	Common	856m	West
VVP_0175	Grassy Woodland	0175	Lower Slopes or Hills Woodlands	Grassy	Victorian Volcanic Plain	Endangered	Common	865m	North West

Native Vegetation Data Custodian: State Government Victoria - Dept of Environment, Land, Water & Planning Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Ramsar Wetlands

What Ramsar wetland areas exist within the dataset buffer?

Map ID	Site Name	Lake Name	Distance	Direction
N/A	No records in buffer			

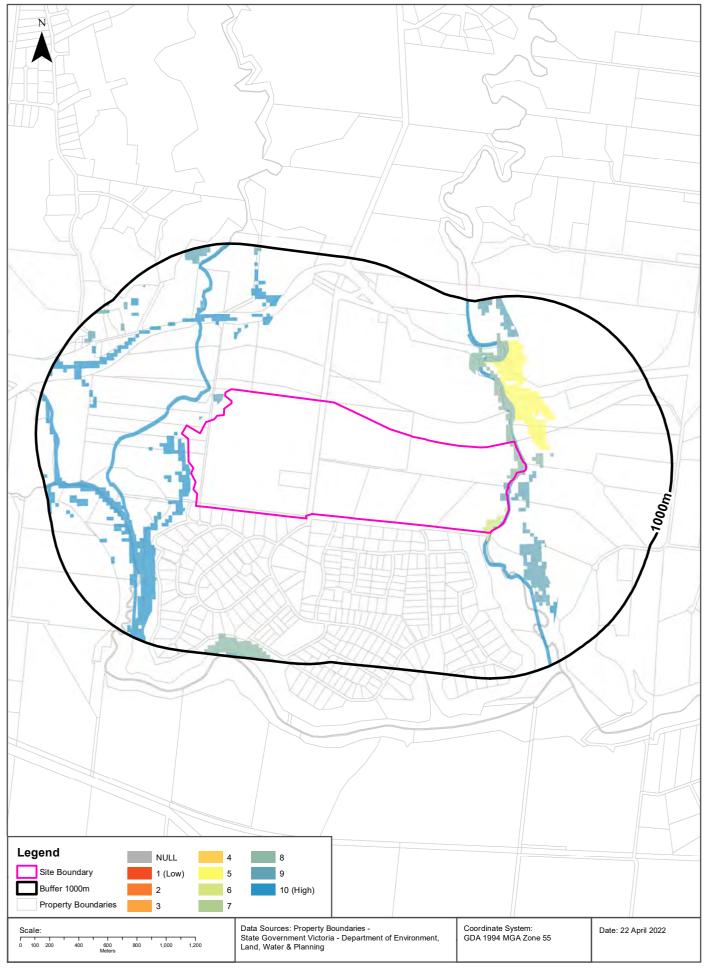
Ramsar Wetland Area Data Custodian: State Government Victoria - Dept of Environment, Land, Water & Planning Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Ecological Constraints - Groundwater Dependent Ecosystems Atlas

124 Hopetoun Park, Hopetoun Park, VIC 3188

Ecological Constraints

124 Hopetoun Park, Hopetoun Park, VIC 3188


Groundwater Dependent Ecosystems Atlas

Туре	Name	GDE Potential	Geomorphology	Ecosystem Type	Aquifer Geology	Distance	Direction
Aquatic	DJERRIWARRH CREEK	High potential GDE - from national assessment	Plains mainly on basalt lavas with many volcanic forms and lakes, partly on weak sedimentary rocks.	River	Unconsolidated sedimentary	0m	On-site
Terrestrial		High potential GDE - from national assessment	Plains mainly on basalt lavas with many volcanic forms and lakes, partly on weak sedimentary rocks.	Vegetation	Unconsolidated sedimentary	0m	On-site
Terrestrial		Moderate potential GDE - from national assessment	Plains mainly on basalt lavas with many volcanic forms and lakes, partly on weak sedimentary rocks.	Vegetation	Unconsolidated sedimentary	0m	On-site
Terrestrial		Moderate potential GDE - from national assessment	Moderately high plateaus and strike ridges.	Vegetation	Unconsolidated sedimentary	0m	On-site
Terrestrial		Moderate potential GDE - from national assessment	Moderately high plateaus and strike ridges.	Vegetation	Fractured rock	0m	On-site
Terrestrial		Moderate potential GDE - from national assessment	Plains mainly on basalt lavas with many volcanic forms and lakes, partly on weak sedimentary rocks.	Vegetation	Fractured rock	16m	South East
Aquatic	PYRITES CREEK	High potential GDE - from national assessment	Moderately high plateaus and strike ridges.	River	Consolidated sedimentary	105m	North West
Aquatic	PYRITES CREEK	High potential GDE - from national assessment	Moderately high plateaus and strike ridges.	River	Unconsolidated sedimentary	150m	West
Terrestrial		High potential GDE - from national assessment	Moderately high plateaus and strike ridges.	Vegetation	Unconsolidated sedimentary	220m	West
Terrestrial		High potential GDE - from national assessment	Plains mainly on basalt lavas with many volcanic forms and lakes, partly on weak sedimentary rocks.	Vegetation	Fractured rock	243m	South West
Aquatic	WERRIBEE RIVER	High potential GDE - from national assessment	Plains mainly on basalt lavas with many volcanic forms and lakes, partly on weak sedimentary rocks.	River	Unconsolidated sedimentary	457m	South West
Aquatic	WERRIBEE RIVER	High potential GDE - from national assessment	Moderately high plateaus and strike ridges.	River	Unconsolidated sedimentary	482m	West
Aquatic	DJERRIWARRH CREEK	High potential GDE - from national assessment	Moderately high plateaus and strike ridges.	River	Unconsolidated sedimentary	551m	North East
Aquatic	LERDERDERG RIVER	High potential GDE - from national assessment	Moderately high plateaus and strike ridges.	River	Unconsolidated sedimentary	836m	West
Terrestrial		Low potential GDE - from national assessment	Moderately high plateaus and strike ridges.	Vegetation	Unconsolidated sedimentary	981m	North West
Terrestrial		High potential GDE - from national assessment	Moderately high plateaus and strike ridges.	Vegetation	Fractured rock	991m	North West

Groundwater Dependent Ecosystems Atlas Data Source: The Bureau of Meteorology Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Inflow Dependent Ecosystems Likelihood 124 Hopetoun Park, Hopetoun Park, VIC 3188

Ecological Constraints

124 Hopetoun Park, Hopetoun Park, VIC 3188

Inflow Dependent Ecosystems Likelihood

Туре	Name	IDE Likelihood	Geomorphology	Ecosystem Type	Aquifer Geology	Distance	Direction
Terrestrial		8	Moderately high plateaus and strike ridges.	Vegetation	Fractured rock	0m	On-site
Aquatic	DJERRIWARRH CREEK	10	Plains mainly on basalt lavas with many volcanic forms and lakes, partly on weak sedimentary rocks.	River	Unconsolidated sedimentary	0m	On-site
Terrestrial		6	Plains mainly on basalt lavas with many volcanic forms and lakes, partly on weak sedimentary rocks.	Vegetation	Unconsolidated sedimentary	0m	On-site
Terrestrial		9	Moderately high plateaus and strike ridges.	Vegetation	Unconsolidated sedimentary	0m	On-site
Terrestrial		6	Moderately high plateaus and strike ridges.	Vegetation	Unconsolidated sedimentary	0m	On-site
Terrestrial		10	Plains mainly on basalt lavas with many volcanic forms and lakes, partly on weak sedimentary rocks.	Vegetation	Unconsolidated sedimentary	0m	On-site
Terrestrial		9	Moderately high plateaus and strike ridges.	Vegetation	Fractured rock	0m	On-site
Terrestrial		10	Moderately high plateaus and strike ridges.	Vegetation	Fractured rock	6m	West
Terrestrial		8	Plains mainly on basalt lavas with many volcanic forms and lakes, partly on weak sedimentary rocks.	Vegetation	Fractured rock	16m	South East
Terrestrial		10	Moderately high plateaus and strike ridges.	Vegetation	Unconsolidated sedimentary	27m	West
Terrestrial		5	Moderately high plateaus and strike ridges.	Vegetation	Unconsolidated sedimentary	103m	East
Aquatic	PYRITES CREEK	10	Moderately high plateaus and strike ridges.	River	Consolidated sedimentary	105m	North West
Terrestrial		9	Plains mainly on basalt lavas with many volcanic forms and lakes, partly on weak sedimentary rocks.	Vegetation	Fractured rock	118m	East
Aquatic	PYRITES CREEK	10	Moderately high plateaus and strike ridges.	River	Unconsolidated sedimentary	150m	West
Terrestrial		8	Moderately high plateaus and strike ridges.	Vegetation	Unconsolidated sedimentary	176m	East
Terrestrial		10	Plains mainly on basalt lavas with many volcanic forms and lakes, partly on weak sedimentary rocks.	Vegetation	Fractured rock	243m	South West
Aquatic	WERRIBEE RIVER	10	Plains mainly on basalt lavas with many volcanic forms and lakes, partly on weak sedimentary rocks.	River	Unconsolidated sedimentary	457m	South West
Aquatic	WERRIBEE RIVER	10	Moderately high plateaus and strike ridges.	River	Unconsolidated sedimentary	482m	West
Aquatic	DJERRIWARRH CREEK	10	Moderately high plateaus and strike ridges.	River	Unconsolidated sedimentary	551m	North East
Aquatic	LERDERDERG RIVER	10	Moderately high plateaus and strike ridges.	River	Unconsolidated sedimentary	836m	West
Terrestrial		7	Moderately high plateaus and strike ridges.	Vegetation	Unconsolidated sedimentary	981m	North West

 $Inflow\ Dependent\ Ecosystems\ Likelihood\ Data\ Source:\ The\ Bureau\ of\ Meteorology\ Creative\ Commons\ 3.0\ \\ \\ \\ \\ \\ Commonwealth\ of\ Australia\ http://creativecommons.org/licenses/by/3.0/au/deed.en$

Location Confidences

Where Lotsearch has had to georeference features from supplied addresses, a location confidence has been assigned to the data record. This indicates a confidence to the positional accuracy of the feature. Where applicable, a code is given under the field heading "LC" or "LocConf". These codes lookup to the following location confidences:

LC Code	Location Confidence
Premise Match	Georeferenced to the site location / premise or part of site
Area Match	Georeferenced to an approximate or general area
Road Match	Georeferenced to a road or rail corridor
Road Intersection	Georeferenced to a road intersection
Buffered Point	A point feature buffered to x metres
Adjacent Match	Land adjacent to a georeferenced feature
Network of Features	Georeferenced to a network of features
Suburb Match	Georeferenced to a suburb boundary
As Supplied	Spatial data supplied by provider

USE OF REPORT - APPLICABLE TERMS

The following terms apply to any person (End User) who is given the Report by the person who purchased the Report from Lotsearch Pty Ltd (ABN: 89 600 168 018) (Lotsearch) or who otherwise has access to the Report (Terms). The contract terms that apply between Lotsearch and the purchaser of the Report are specified in the order form pursuant to which the Report was ordered and the terms set out below are of no effect as between Lotsearch and the purchaser of the Report.

- 1. End User acknowledges and agrees that:
 - (a) the Report is compiled from or using content (Third Party Content) which is comprised of:
 - (i) content provided to Lotsearch by third party content suppliers with whom Lotsearch has contractual arrangements or content which is freely available or methodologies licensed to Lotsearch by third parties with whom Lotsearch has contractual arrangements (Third Party Content Suppliers); and
 - (ii) content which is derived from content described in paragraph (i);
 - (b) Neither Lotsearch nor Third Party Content Suppliers takes any responsibility for or give any warranty in relation to the accuracy or completeness of any Third Party Content included in the Report including any contaminated land assessment or other assessment included as part of a Report;
 - (c) the Third Party Content Suppliers do not constitute an exhaustive set of all repositories or sources of information available in relation to the property which is the subject of the Report (Property) and accordingly neither Lotsearch nor Third Party Content Suppliers gives any warranty in relation to the accuracy or completeness of the Third Party Content incorporated into the report including any contaminated land assessment or other assessment included as part of a Report;
 - (d) Reports are generated at a point in time (as specified by the date/time stamp appearing on the Report) and accordingly the Report is based on the information available at that point in time and Lotsearch is not obliged to undertake any additional reporting to take into consideration any information that may become available between the point in time specified by the date/time stamp and the date on which the Report was provided by Lotsearch to the purchaser of the Report;
 - (e) Reports must be used or reproduced in their entirety and End User must not reproduce or make available to other persons only parts of the Report;
 - (f) Lotsearch has not undertaken any physical inspection of the property;
 - (g) neither Lotsearch nor Third Party Content Suppliers warrants that all land uses or features whether past or current are identified in the Report;
 - (h) the Report does not include any information relating to the actual state or condition of the Property;
 - (i) the Report should not be used or taken to indicate or exclude actual fitness or unfitness of Land or Property for any particular purpose
 - (j) the Report should not be relied upon for determining saleability or value or making any other decisions in relation to the Property and in particular should not be taken to be a rating or assessment of the desirability or market value of the property or its features; and
 - (k) the End User should undertake its own inspections of the Land or Property to satisfy itself that there are no defects or failures
- 2. The End User may not make the Report or any copies or extracts of the report or any part of it available to any other person. If End User wishes to provide the Report to any other person or make extracts or copies of the Report, it must contact the purchaser of the Report before doing so to ensure the proposed use is consistent with the contract terms between Lotsearch and the purchaser.
- 3. Neither Lotsearch (nor any of its officers, employees or agents) nor any of its Third Party Content Suppliers will have any liability to End User or any person to whom End User provides the Report and End User must not represent that Lotsearch or any of its Third Party Content Suppliers accepts liability to any such person or make any other representation to any such person on behalf of Lotsearch or any Third Party Content Supplier.
- 4. The End User hereby to the maximum extent permitted by law:
 - (a) acknowledges that the Lotsearch (nor any of its officers, employees or agents), nor any of its Third Party Content Supplier have any liability to it under or in connection with the

- Report or these Terms;
- (b) waives any right it may have to claim against Third Party Content Supplier in connection with the Report, or the negotiation of, entry into, performance of, or termination of these Terms; and
- releases each Third Party Content Supplier from any claim it may have otherwise had in connection with the Report, or the negotiation of, entry into, performance of, or termination of these Terms.
- 5. The End User acknowledges that any Third Party Supplier shall be entitled to plead the benefits conferred on it under clause 4, despite not being a party to these terms.
- 6. End User must not remove any copyright notices, trade marks, digital rights management information, other embedded information, disclaimers or limitations from the Report or authorise any person to do so.
- 7. End User acknowledges and agrees that Lotsearch and Third Party Content Suppliers retain ownership of all copyright, patent, design right (registered or unregistered), trade marks (registered or unregistered), database right or other data right, moral right or know how or any other intellectual property right in any Report or any other item, information or data included in or provided as part of a Report.
- 8. To the extent permitted by law and subject to paragraph 9, all implied terms, representations and warranties whether statutory or otherwise relating to the subject matter of these Terms other than as expressly set out in these Terms are excluded.
- Subject to paragraph 6, Lotsearch excludes liability to End User for loss or damage of any kind, however caused, due to Lotsearch's negligence, breach of contract, breach of any law, in equity, under indemnities or otherwise, arising out of all acts, omissions and events whenever occurring.
- 10. Lotsearch acknowledges that if, under applicable State, Territory or Commonwealth law, End User is a consumer certain rights may be conferred on End User which cannot be excluded, restricted or modified. If so, and if that law applies to Lotsearch, then, Lotsearch's liability is limited to the greater of an amount equal to the cost of resupplying the Report and the maximum extent permitted under applicable laws.
- 11. Subject to paragraph 9, neither Lotsearch nor the End User is liable to the other for:
 - (a) any indirect, incidental, consequential, special or exemplary damages arising out of or in relation to the Report or these Terms; or
 - any loss of profit, loss of revenue, loss of interest, loss of data, loss of goodwill or loss of business opportunities, business interruption arising directly or indirectly out of or in relation to the Report or these Terms,

irrespective of how that liability arises including in contract or tort, liability under indemnity or for any other common law, equitable or statutory cause of action or otherwise.

12. These Terms are subject to New South Wales law.

Appendix C – Planning Property Reports

From www.planning.vic.gov.au at 16 June 2022 03:35 PM

PROPERTY DETAILS

Address: 30 KYLE LANE HOPETOUN PARK 3340

Lot and Plan Number: Lot 2 PS630818 Standard Parcel Identifier (SPI): 2\PS630818

Local Government Area (Council): MOORABOOL www.moorabool.vic.gov.au

Council Property Number: 420135

Moorabool Planning Scheme - Moorabool Planning Scheme:

Directory Reference: Melway 335 E8

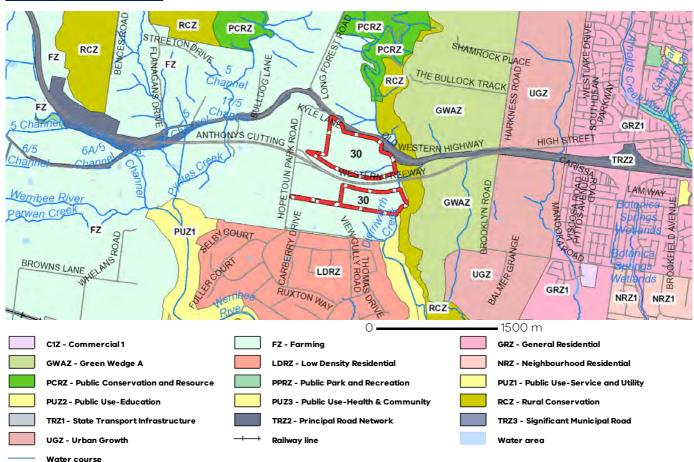
UTILITIES STATE ELECTORATES

Rural Water Corporation: **Southern Rural Water** Legislative Council: **WESTERN VICTORIA**

Urban Water Corporation: Western Water Legislative Assembly: **MELTON**

Melbourne Water: Inside drainage boundary

Power Distributor: **POWERCOR OTHER**


Registered Aboriginal Party: Wurundjeri Woi Wurrung Cultural

Heritage Aboriginal Corporation

Planning Zones

View location in VicPlan

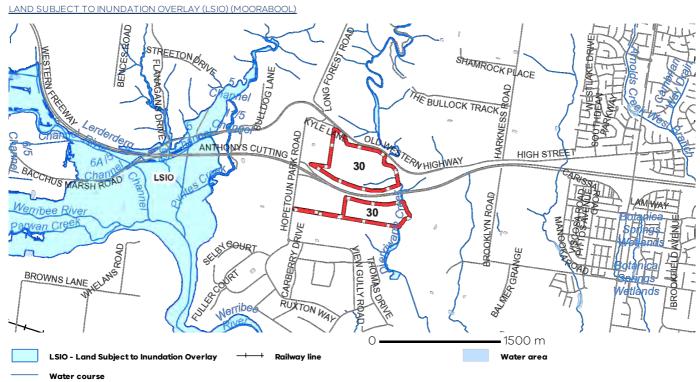
FARMING ZONE (FZ) (MOORABOOL)

Note: labels for zones may appear outside the actual zone - please compare the labels with the legend.

Copyright ® - State Government of Victoria
Disclaimer: This content is provided for information purposes only. No claim is made as to the accuracy or authenticity of the content. The Victorian Government does not accept any liability to any person for the information provided.

Read the full disclaimer at https://www2.delwp.vic.gov.au/disclaimer

Planning Overlays


DESIGN AND DEVELOPMENT OVERLAY (DDO) (MOORABOOL)

DESIGN AND DEVELOPMENT OVERLAY - SCHEDULE 2 (DDO2) (MOORABOOL)

DESIGN AND DEVELOPMENT OVERLAY - SCHEDULE 3 (DDO3) (MOORABOOL)

Note: due to overlaps, some overlays may not be visible, and some colours may not match those in the legend

Note: due to overlaps, some overlays may not be visible, and some colours may not match those in the legend

Copyright ® - State Government of Victoria
Disclaimer: This content is provided for information purposes only. No claim is made as to the accuracy or authenticity of the content. The Victorian Government does not accept any liability to any person for the information provided.

Read the full disclaimer at https://www2.delwp.vic.gov.au/disclaimer

Planning Overlays

OTHER OVERLAYS

Other overlays in the vicinity not directly affecting this land

BUSHFIRE MANAGEMENT OVERLAY (BMO) (MELTON)

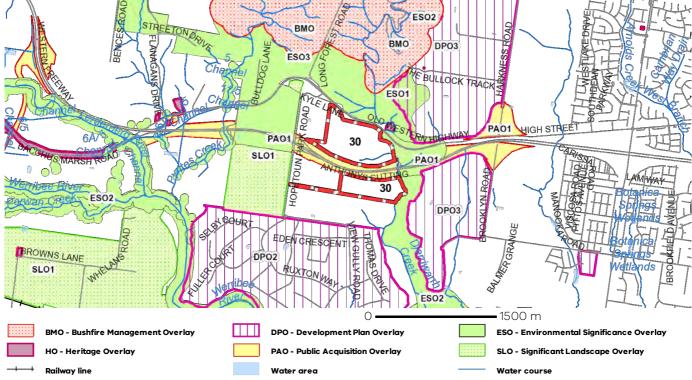
BUSHFIRE MANAGEMENT OVERLAY (BMO) (MOORABOOL)

DEVELOPMENT PLAN OVERLAY (DPO) (MOORABOOL)

DEVELOPMENT PLAN OVERLAY (DPO) (MELTON)

ENVIRONMENTAL SIGNIFICANCE OVERLAY (ESO) (MELTON)

ENVIRONMENTAL SIGNIFICANCE OVERLAY (ESO) (MOORABOOL)


HERITAGE OVERLAY (HO) (MOORABOOL)

HERITAGE OVERLAY (HO) (MELTON)

PUBLIC ACQUISITION OVERLAY (PAO) (MELTON)

PUBLIC ACQUISITION OVERLAY (PAO) (MOORABOOL)

SIGNIFICANT LANDSCAPE OVERLAY (SLO) (MOORABOOL)

Note: due to overlaps, some overlays may not be visible, and some colours may not match those in the legend

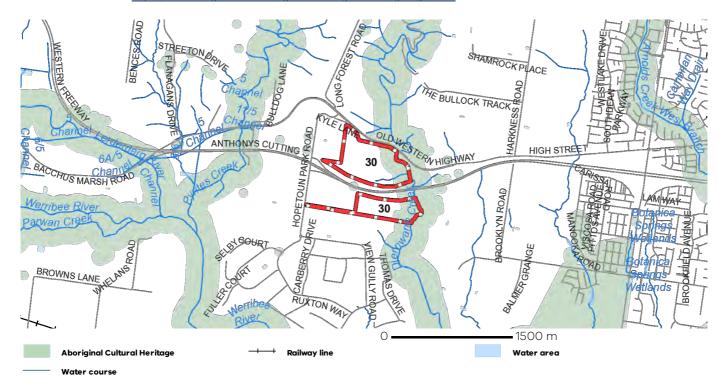
Copyright ® - State Government of Victoria
Disclaimer: This content is provided for information purposes only. No claim is made as to the accuracy or authenticity of the content. The Victorian Government does not accept any liability to any person for the information provided.

Read the full disclaimer at https://www2.delwp.vic.gov.au/disclaimer

Areas of Aboriginal Cultural Heritage Sensitivity

All or part of this property is an 'area of cultural heritage sensitivity'.

'Areas of cultural heritage sensitivity' are defined under the Aboriginal Heritage Regulations 2018, and include registered Aboriginal cultural heritage places and land form types that are generally regarded as more likely to contain Aboriginal cultural heritage.


Under the Aboriginal Heritage Regulations 2018, 'areas of cultural heritage sensitivity' are one part of a two part trigger which require a 'cultural heritage management plan' be prepared where a listed 'high impact activity' is proposed.

If a significant land use change is proposed (for example, a subdivision into 3 or more lots), a cultural heritage management plan may be triggered. One or two dwellings, works ancillary to a dwelling, services to a dwelling, alteration of buildings and minor works are examples of works exempt from this reauirement.

Under the Aboriginal Heritage Act 2006, where a cultural heritage management plan is required, planning permits, licences and work authorities cannot be issued unless the cultural heritage management plan has been approved for the activity.

For further information about whether a Cultural Heritage Management Plan is required go to http://www.aav.nrms.net.au/aavQuestion1.aspx

More information, including links to both the Aboriginal Heritage Act 2006 and the Aboriginal Heritage Regulations 2018, and the Aboriginal Heritage Regulatiocan also be found here - https://www.aboriginalvictoria.vic.gov.au/aboriginal-heritage-legislation

Copyright ® - State Government of Victoria
Disclaimer: This content is provided for information purposes only. No claim is made as to the accuracy or authenticity of the content. The Victorian Government does not accept any liability to any person for the information provided.

Read the full disclaimer at https://www2.delwp.vic.gov.au/disclaimer

Further Planning Information

Planning scheme data last updated on 15 June 2022.

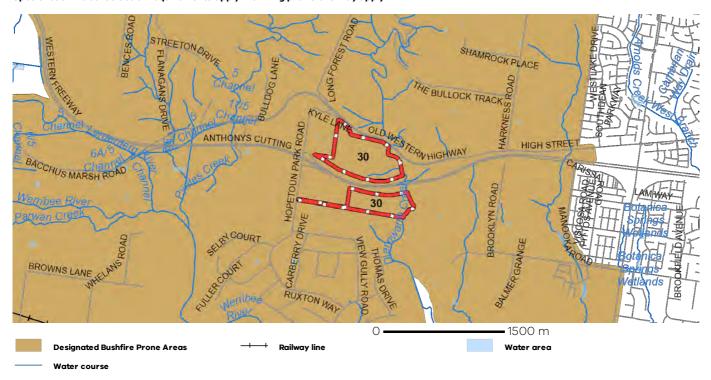
A planning scheme sets out policies and requirements for the use, development and protection of land. This report provides information about the zone and overlay provisions that apply to the selected land. Information about the State and local policy, particular, general and operational provisions of the local planning scheme that may affect the use of this land can be obtained by contacting the local council or by visiting https://www.planning.vic.gov.au

This report is NOT a Planning Certificate issued pursuant to Section 199 of the Planning and Environment Act 1987. It does not include information about exhibited planning scheme amendments, or zonings that may abut the land. To obtain a Planning Certificate go to Titles and Property Certificates at Landata - https://www.landata.vic.gov.au

For details of surrounding properties, use this service to get the Reports for properties of interest.

To view planning zones, overlay and heritage information in an interactive format visit https://mapshare.maps.vic.gov.au/vicplan

For other information about planning in Victoria visit https://www.planning.vic.gov.au


Copyright ® - State Government of Victoria
Disclaimer: This content is provided for information purposes only. No claim is made as to the accuracy or authenticity of the content. The Victorian Government does not accept any liability to any person for the information provided.

Read the full disclaimer at https://www2.delwp.vic.gov.au/disclaimer

Designated Bushfire Prone Areas

This property is in a designated bushfire prone area. Special bushfire construction requirements apply. Planning provisions may apply.

Designated bushfire prone areas as determined by the Minister for Planning are in effect from 8 September 2011 and amended from time to time.

The Building Regulations 2018 through application of the Building Code of Australia, apply bushfire protection standards for building works in designated bushfire prone areas

Designated bushfire prone areas maps can be viewed on VicPlan at https://mapshare.maps.vic.gov.au/vicplan or at the relevant local council.

Note: prior to 8 September 2011, the whole of Victoria was designated as bushfire prone area for the purposes of the building control system.

Further information about the building control system and building in bushfire prone areas can be found on the Victorian Building Authority website https://www.vba.vic.gov.au

Copies of the Building Act and Building Regulations are available from http://www.legislation.vic.gov.au

For Planning Scheme Provisions in bushfire areas visit https://www.planning.vic.gov.au

Native Vegetation

Native plants that are indigenous to the region and important for biodiversity might be present on this property. This could include trees, shrubs, herbs, grasses or aquatic plants. There are a range of regulations that may apply including need to obtain a planning permit under Clause 52.17 of the local planning scheme. For more information see Native Vegetation (Clause 52.17) with local variations in Native Vegetation (Clause 52.17) Schedule

To help identify native vegetation on this property and the application of Clause 52.17 please visit the Native Vegetation Information Management system https://nvim.delwp.vic.gov.au/and Native vegetation (environment.vic.gov.au) or please contact your relevant council.

You can find out more about the natural values on your property through NatureKit NatureKit (environment.vic.gov.au)

Copyright © - State Government of Victoria
Disclaimer: This content is provided for information purposes only. No claim is made as to the accuracy or authenticity of the content. The Victorian Government does not accept any liability to any person for the information provided.

Read the full disclaimer at https://www2.delwp.vic.gov.au/disclaimer

From www.planning.vic.gov.au at 16 June 2022 03:33 PM

PROPERTY DETAILS

Address: 97 HOPETOUN PARK ROAD HOPETOUN PARK 3340

Lot and Plan Number: Lot 3 PS630818 Standard Parcel Identifier (SPI): 3\PS630818

Local Government Area (Council): MOORABOOL www.moorabool.vic.gov.au

Council Property Number: 401150

Planning Scheme - Moorabool Planning Scheme: Moorabool

Melway 335 C10 Directory Reference:

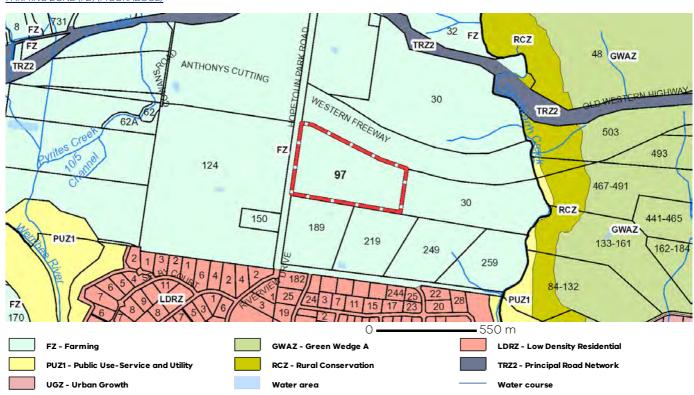
UTILITIES STATE ELECTORATES

Rural Water Corporation: **Southern Rural Water** Legislative Council: **WESTERN VICTORIA**

Urban Water Corporation: Western Water Legislative Assembly: **MELTON**

Melbourne Water: Inside drainage boundary

Power Distributor: **POWERCOR OTHER**


Registered Aboriginal Party: Wurundjeri Woi Wurrung Cultural

Heritage Aboriginal Corporation

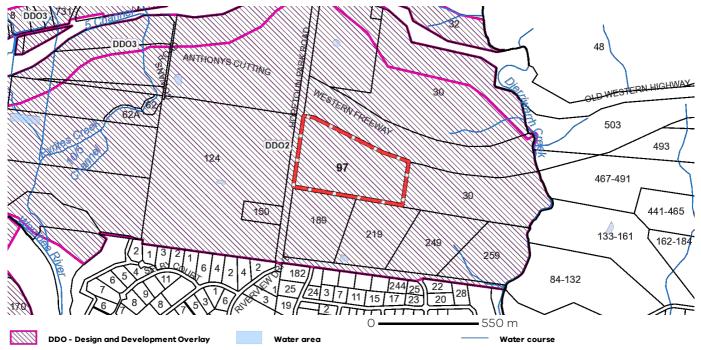
View location in VicPlan

Planning Zones

FARMING ZONE (FZ) (MOORABOOL)

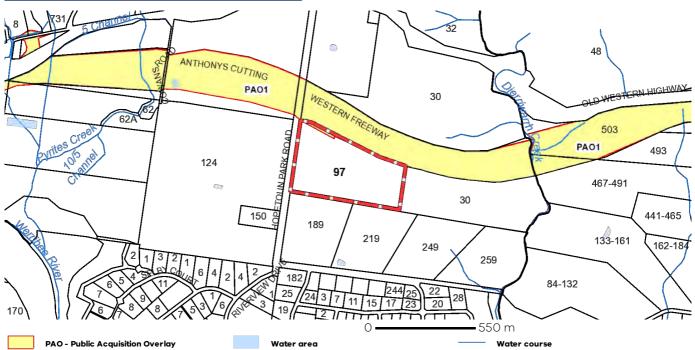
Note: labels for zones may appear outside the actual zone - please compare the labels with the legend.

Copyright ® - State Government of Victoria
Disclaimer: This content is provided for information purposes only. No claim is made as to the accuracy or authenticity of the content. The Victorian Government does not accept any liability to any person for the information provided.


Read the full disclaimer at https://www2.delwp.vic.gov.au/disclaimer

Planning Overlays

DESIGN AND DEVELOPMENT OVERLAY (DDO) (MOORABOOL)


DESIGN AND DEVELOPMENT OVERLAY - SCHEDULE 2 (DDO2) (MOORABOOL)

Note: due to overlaps, some overlays may not be visible, and some colours may not match those in the legend

PUBLIC ACQUISITION OVERLAY (PAO) (MOORABOOL)

PUBLIC ACQUISITION OVERLAY 1 SCHEDULE (PAO1) (MOORABOOL)

Note: due to overlaps, some overlays may not be visible, and some colours may not match those in the legend

Copyright ® - State Government of Victoria
Disclaimer: This content is provided for information purposes only. No claim is made as to the accuracy or authenticity of the content. The Victorian Government does not accept any liability to any person for the information provided.

Read the full disclaimer at https://www2.delwp.vic.gov.au/disclaimer

Planning Overlays

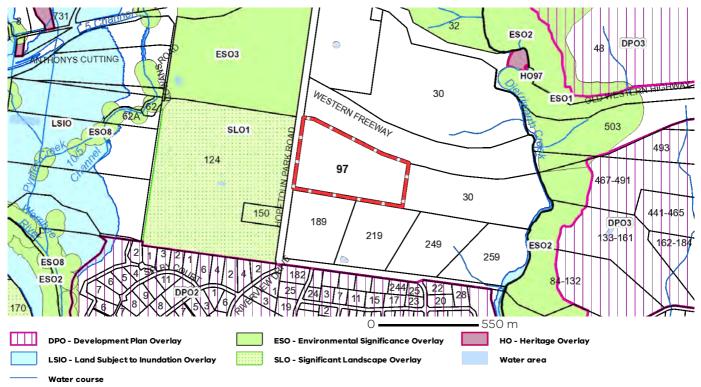
OTHER OVERLAYS

Other overlays in the vicinity not directly affecting this land

DEVELOPMENT PLAN OVERLAY (DPO) (MOORABOOL)

DEVELOPMENT PLAN OVERLAY (DPO) (MELTON)

ENVIRONMENTAL SIGNIFICANCE OVERLAY (ESO) (MELTON)


ENVIRONMENTAL SIGNIFICANCE OVERLAY (ESO) (MOORABOOL)

HERITAGE OVERLAY (HO) (MOORABOOL)

HERITAGE OVERLAY (HO) (MELTON)

LAND SUBJECT TO INUNDATION OVERLAY (LSIO) (MOORABOOL)

SIGNIFICANT LANDSCAPE OVERLAY (SLO) (MOORABOOL)

Note: due to overlaps, some overlays may not be visible, and some colours may not match those in the legend

Further Planning Information

Planning scheme data last updated on 15 June 2022.

A planning scheme sets out policies and requirements for the use, development and protection of land. This report provides information about the zone and overlay provisions that apply to the selected land. Information about the State and local policy, particular, general and operational provisions of the local planning scheme that may affect the use of this land can be obtained by contacting the local council or by visiting https://www.planning.vic.gov.au

This report is NOT a Planning Certificate issued pursuant to Section 199 of the Planning and Environment Act 1987. It does not include information about exhibited planning scheme amendments, or zonings that may abut the land. To obtain a Planning Certificate go to Titles and Property Certificates at Landata - https://www.landata.vic.gov.au

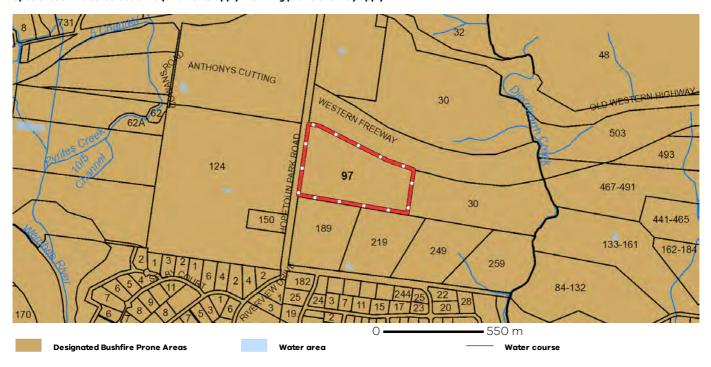
For details of surrounding properties, use this service to get the Reports for properties of interest.

To view planning zones, overlay and heritage information in an interactive format visit https://mapshare.maps.vic.gov.au/vicplan

For other information about planning in Victoria visit https://www.planning.vic.gov.au

Copyright ® - State Government of Victoria
Disclaimer: This content is provided for information purposes only. No claim is made as to the accuracy or authenticity of the content. The Victorian Government does not accept any liability to any person for the information provided.

Read the full disclaimer at https://www2.delwp.vic.gov.au/disclaimer


Notwithstanding this disclaimer, a vendor may rely on the information in this report for the purpose of a statement that land is in a bushfire prone area as required by section 32C (b) of the Sale of Land 1962 (Vic).

PLANNING PROPERTY REPORT: 97 HOPETOUN PARK ROAD HOPETOUN PARK 3340

Designated Bushfire Prone Areas

This property is in a designated bushfire prone area. Special bushfire construction requirements apply. Planning provisions may apply.

Designated bushfire prone areas as determined by the Minister for Planning are in effect from 8 September 2011 and amended from time to time.

The Building Regulations 2018 through application of the Building Code of Australia, apply bushfire protection standards for building works in designated bushfire prone areas.

Designated bushfire prone areas maps can be viewed on VicPlan at https://mapshare.maps.vic.gov.au/vicplan or at the relevant local council.

Note: prior to 8 September 2011, the whole of Victoria was designated as bushfire prone area for the purposes of the building control system.

Further information about the building control system and building in bushfire prone areas can be found on the Victorian Building Authority website https://www.vba.vic.gov.au

Copies of the Building Act and Building Regulations are available from http://www.legislation.vic.gov.au

For Planning Scheme Provisions in bushfire areas visit https://www.planning.vic.gov.au

Native Vegetation

Native plants that are indigenous to the region and important for biodiversity might be present on this property. This could include trees, shrubs, herbs, grasses or aquatic plants. There are a range of regulations that may apply including need to obtain a planning permit under Clause 52.17 of the local planning scheme. For more information see Native Vegetation (Clause 52.17) with local variations in Native Vegetation (Clause 52.17) Schedule

To help identify native vegetation on this property and the application of Clause 52.17 please visit the Native Vegetation Information Management system https://nvim.delwp.vic.gov.au/ and Native vegetation (environment.vic.gov.au) or please contact your relevant council.

You can find out more about the natural values on your property through NatureKit NatureKit (environment.vic.gov.au)

Copyright ® - State Government of Victoria
Disclaimer: This content is provided for information purposes only. No claim is made as to the accuracy or authenticity of the content. The Victorian Government does not accept any liability to any person for the information provided.

Read the full disclaimer at https://www2.delwp.vic.gov.au/disclaimer

From www.planning.vic.gov.au at 16 June 2022 03:24 PM

PROPERTY DETAILS

Address: 124 HOPETOUN PARK ROAD HOPETOUN PARK 3340

Lot and Plan Number: More than one parcel - see link below Standard Parcel Identifier (SPI): More than one parcel - see link below

Local Government Area (Council): MOORABOOL www.moorabool.vic.gov.au

Council Property Number: 401750

Moorabool Planning Scheme - Moorabool Planning Scheme:

Melway 335 C11 Directory Reference:

This property has 3 parcels. For full parcel details get the free Property report at Property Reports

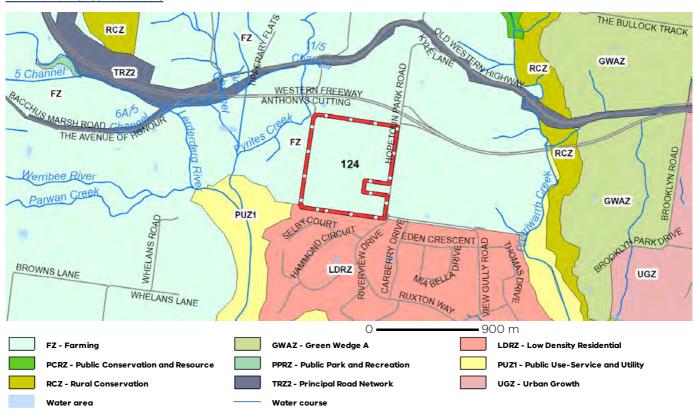
UTILITIES STATE ELECTORATES

WESTERN VICTORIA Rural Water Corporation: **Southern Rural Water** Legislative Council:

Urban Water Corporation: **Western Water** Legislative Assembly: **MELTON**

Melbourne Water: Inside drainage boundary

Power Distributor: **POWERCOR OTHER**


Registered Aboriginal Party: Wurundjeri Woi Wurrung Cultural

Heritage Aboriginal Corporation

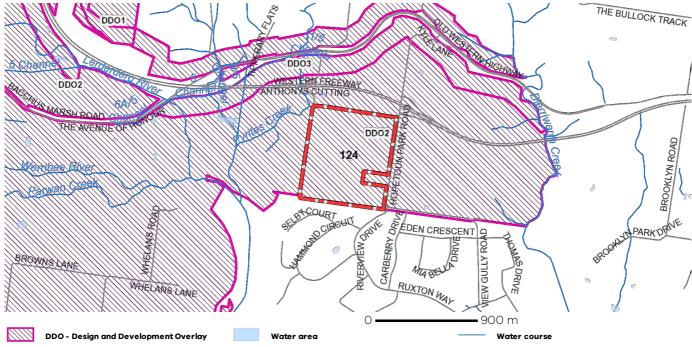
Planning Zones

View location in VicPlan

FARMING ZONE (FZ) (MOORABOOL)

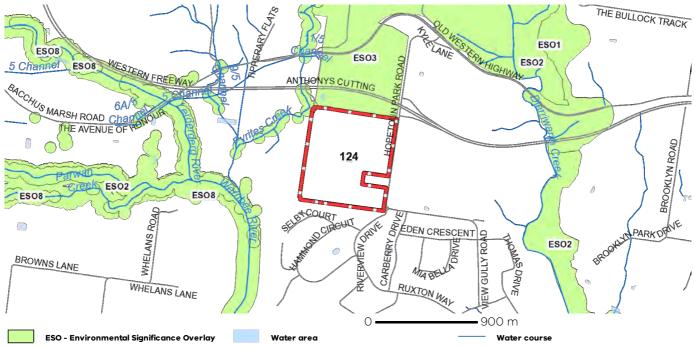
Note: labels for zones may appear outside the actual zone - please compare the labels with the legend.

Copyright ® - State Government of Victoria
Disclaimer: This content is provided for information purposes only. No claim is made as to the accuracy or authenticity of the content. The Victorian Government does not accept any liability to any person for the information provided.


Read the full disclaimer at https://www2.delwp.vic.gov.au/disclaimer

Planning Overlays

DESIGN AND DEVELOPMENT OVERLAY (DDO) (MOORABOOL)


DESIGN AND DEVELOPMENT OVERLAY - SCHEDULE 2 (DDO2) (MOORABOOL)

Note: due to overlaps, some overlays may not be visible, and some colours may not match those in the legend

ENVIRONMENTAL SIGNIFICANCE OVERLAY (ESO) (MOORABOOL)

ENVIRONMENTAL SIGNIFICANCE OVERLAY - SCHEDULE 8 (ESO8) (MOORABOOL)

Note: due to overlaps, some overlays may not be visible, and some colours may not match those in the legend

Copyright ® - State Government of Victoria
Disclaimer: This content is provided for information purposes only. No claim is made as to the accuracy or authenticity of the content. The Victorian Government does not accept any liability to any person for the information provided.

Read the full disclaimer at https://www2.delwp.vic.gov.au/disclaimer

Planning Overlays

SIGNIFICANT LANDSCAPE OVERLAY (SLO) (MOORABOOL) SIGNIFICANT LANDSCAPE OVERLAY - SCHEDULE 1 (SLO1) (MOORABOOL) THE BULLOCK TRACK NO WESTERN HIGHWI 5 Channel THE AVENUE OF TO WESTERN FREEWAY Vittes Cite BROOKLYN ROAD 124 Werribee River Parwan Greek BROOKEN PARK DRIVE S ROAD REMAIN CIRCUIT CARBERRY DEN CLESCENT OF STATE WHELA BROWNS LANE SLO1 PRIVE RUXTON WAY WHELANS LANE

0

900 m

Water course

Note: due to overlaps, some overlays may not be visible, and some colours may not match those in the legend

Water area

SLO - Significant Landscape Overlay

Copyright © - State Government of Victoria

Disclaimer: This content is provided for information purposes only. No claim is made as to the accuracy or authenticity of the content. The Victorian Government does not accept any liability to any person for the information provided.

Read the full disclaimer at https://www2.delwp.vic.gov.au/disclaimer

OTHER OVERLAYS

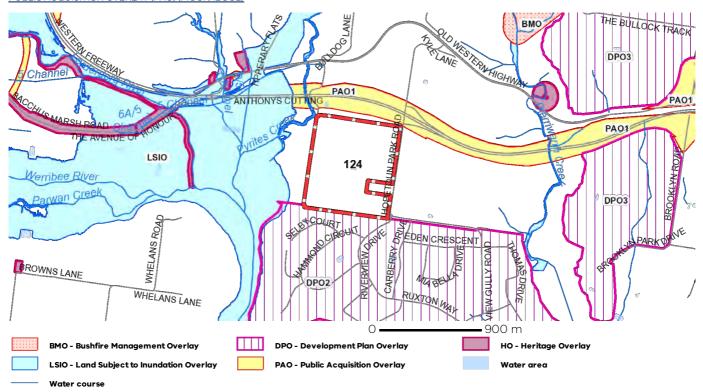
Other overlays in the vicinity not directly affecting this land

BUSHFIRE MANAGEMENT OVERLAY (BMO) (MELTON)

BUSHFIRE MANAGEMENT OVERLAY (BMO) (MOORABOOL)

DEVELOPMENT PLAN OVERLAY (DPO) (MOORABOOL)

DEVELOPMENT PLAN OVERLAY (DPO) (MELTON)


HERITAGE OVERLAY (HO) (MOORABOOL)

HERITAGE OVERLAY (HO) (MELTON)

LAND SUBJECT TO INUNDATION OVERLAY (LSIO) (MOORABOOL)

PUBLIC ACQUISITION OVERLAY (PAO) (MELTON)

PUBLIC ACQUISITION OVERLAY (PAO) (MOORABOOL)

Note: due to overlaps, some overlays may not be visible, and some colours may not match those in the legend

Copyright © - State Government of Victoria

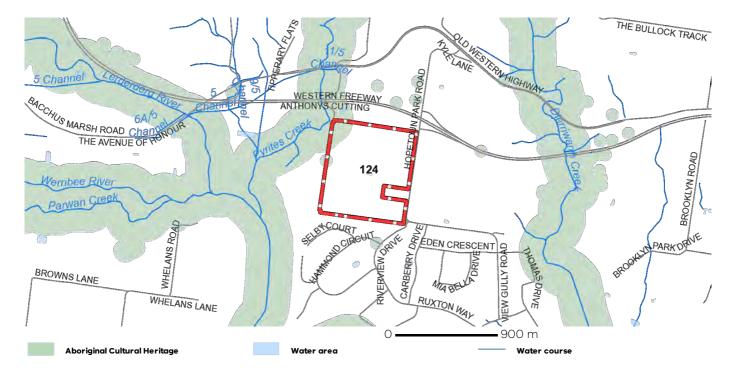
Disclaimer: This content is provided for information purposes only. No claim is made as to the accuracy or authenticity of the content. The Victorian Government does not accept any liability to any person for the information provided.

Read the full disclaimer at https://www2.delwp.vic.gov.au/disclaimer

Areas of Aboriginal Cultural Heritage Sensitivity

All or part of this property is an 'area of cultural heritage sensitivity'.

'Areas of cultural heritage sensitivity' are defined under the Aboriginal Heritage Regulations 2018, and include registered Aboriginal cultural heritage places and land form types that are generally regarded as more likely to contain Aboriginal cultural heritage.


Under the Aboriginal Heritage Regulations 2018, 'areas of cultural heritage sensitivity' are one part of a two part trigger which require a 'cultural heritage management plan' be prepared where a listed 'high impact activity' is proposed.

If a significant land use change is proposed (for example, a subdivision into 3 or more lots), a cultural heritage management plan may be triggered. One or two dwellings, works ancillary to a dwelling, services to a dwelling, alteration of buildings and minor works are examples of works exempt from this reauirement.

Under the Aboriginal Heritage Act 2006, where a cultural heritage management plan is required, planning permits, licences and work authorities cannot be issued unless the cultural heritage management plan has been approved for the activity.

For further information about whether a Cultural Heritage Management Plan is required go to http://www.aav.nrms.net.au/aavQuestion1.aspx

More information, including links to both the Aboriginal Heritage Act 2006 and the Aboriginal Heritage Regulations 2018, and the Aboriginal Heritage Regulatio $can \ also \ be found \ here - \underline{https://www.aboriginalvictoria.vic.gov.au/aboriginal-heritage-legislation}$

Copyright ® - State Government of Victoria
Disclaimer: This content is provided for information purposes only. No claim is made as to the accuracy or authenticity of the content. The Victorian Government does not accept any liability to any person for the information provided.

Read the full disclaimer at https://www2.delwp.vic.gov.au/disclaimer

Further Planning Information

Planning scheme data last updated on 15 June 2022.

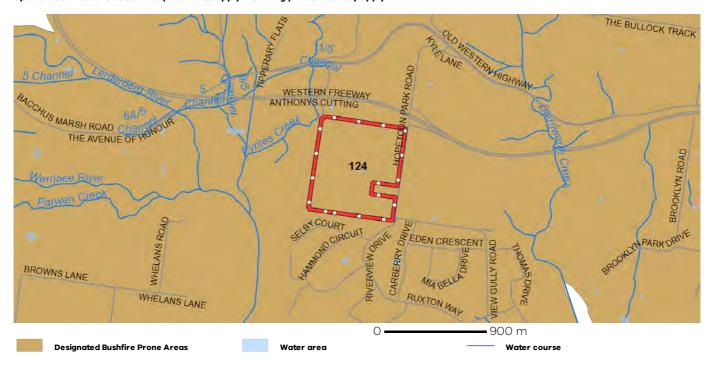
A planning scheme sets out policies and requirements for the use, development and protection of land. This report provides information about the zone and overlay provisions that apply to the selected land. Information about the State and local policy, particular, general and operational provisions of the local planning scheme that may affect the use of this land can be obtained by contacting the local council or by visiting https://www.planning.vic.gov.au

This report is NOT a Planning Certificate issued pursuant to Section 199 of the Planning and Environment Act 1987. It does not include information about exhibited planning scheme amendments, or zonings that may abut the land. To obtain a Planning Certificate go to Titles and Property Certificates at Landata - https://www.landata.vic.gov.au

For details of surrounding properties, use this service to get the Reports for properties of interest.

To view planning zones, overlay and heritage information in an interactive format visit https://mapshare.maps.vic.gov.au/vicplan

For other information about planning in Victoria visit https://www.planning.vic.gov.au


Copyright ® - State Government of Victoria
Disclaimer: This content is provided for information purposes only. No claim is made as to the accuracy or authenticity of the content. The Victorian Government does not accept any liability to any person for the information provided.

Read the full disclaimer at https://www2.delwp.vic.gov.au/disclaimer

Designated Bushfire Prone Areas

This property is in a designated bushfire prone area. Special bushfire construction requirements apply. Planning provisions may apply.

Designated bushfire prone areas as determined by the Minister for Planning are in effect from 8 September 2011 and amended from time to time.

The Building Regulations 2018 through application of the Building Code of Australia, apply bushfire protection standards for building works in designated bushfire prone areas.

Designated bushfire prone areas maps can be viewed on VicPlan at https://mapshare.maps.vic.gov.au/vicplan or at the relevant local council.

Note: prior to 8 September 2011, the whole of Victoria was designated as bushfire prone area for the purposes of the building control system.

Further information about the building control system and building in bushfire prone areas can be found on the Victorian Building Authority website https://www.vba.vic.gov.au

Copies of the Building Act and Building Regulations are available from http://www.legislation.vic.gov.au

For Planning Scheme Provisions in bushfire areas visit https://www.planning.vic.gov.au

Native Vegetation

Native plants that are indigenous to the region and important for biodiversity might be present on this property. This could include trees, shrubs, herbs, grasses or aquatic plants. There are a range of regulations that may apply including need to obtain a planning permit under Clause 52.17 of the local planning scheme. For more information see Native Vegetation (Clause 52.17) with local variations in Native Vegetation (Clause 52.17) Schedule

To help identify native vegetation on this property and the application of Clause 52.17 please visit the Native Vegetation Information Management system https://nvim.delwp.vic.gov.au/ and Native vegetation (environment.vic.gov.au/ or please contact your relevant council.

You can find out more about the natural values on your property through NatureKit NatureKit (environment.vic.gov.au)

Copyright ® - State Government of Victoria
Disclaimer: This content is provided for information purposes only. No claim is made as to the accuracy or authenticity of the content. The Victorian Government does not accept any liability to any person for the information provided.

Read the full disclaimer at https://www2.delwp.vic.gov.au/disclaimer

From www.planning.vic.gov.au at 16 June 2022 03:26 PM

PROPERTY DETAILS

Address: 150 HOPETOUN PARK ROAD HOPETOUN PARK 3340

Lot and Plan Number: Lot 1 PS604556

Standard Parcel Identifier (SPI): 1\PS604556

Local Government Area (Council): MOORABOOL www.moorabool.vic.gov.au

Council Property Number: 401755

Planning Scheme - Moorabool Planning Scheme: Moorabool

Directory Reference: **Melway 335 C11**

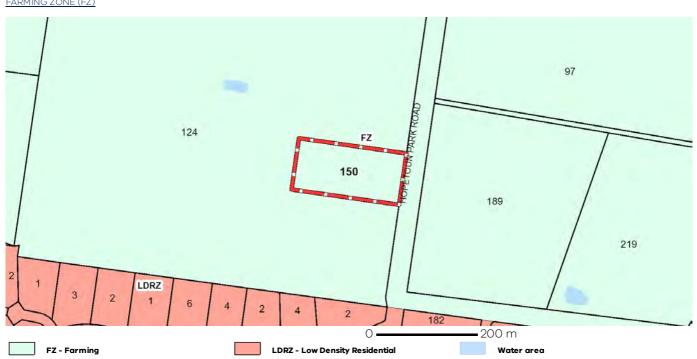
UTILITIES STATE ELECTORATES

Rural Water Corporation: **Southern Rural Water** Legislative Council: **WESTERN VICTORIA**

Urban Water Corporation: Western Water Legislative Assembly: **MELTON**

Melbourne Water: Inside drainage boundary

Power Distributor: **POWERCOR OTHER**


Registered Aboriginal Party: Wurundjeri Woi Wurrung Cultural

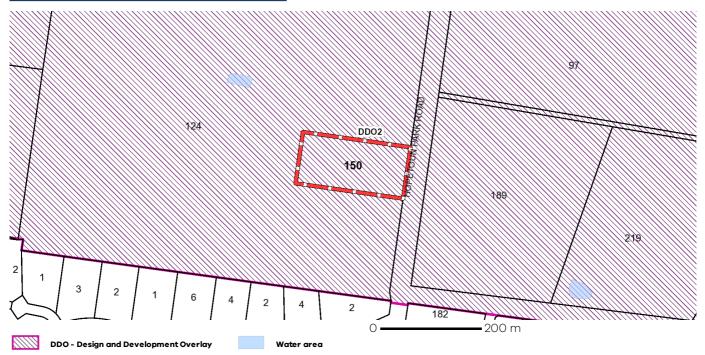
Heritage Aboriginal Corporation

View location in VicPlan

Planning Zones

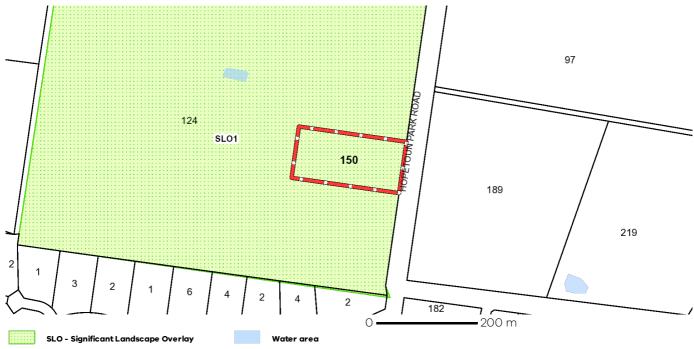
FARMING ZONE (FZ)

Note: labels for zones may appear outside the actual zone - please compare the labels with the legend.


Copyright ® - State Government of Victoria
Disclaimer: This content is provided for information purposes only. No claim is made as to the accuracy or authenticity of the content. The Victorian Government does not accept any liability to any person for the information provided.

Read the full disclaimer at https://www2.delwp.vic.gov.au/disclaimer

Planning Overlays


DESIGN AND DEVELOPMENT OVERLAY (DDO) DESIGN AND DEVELOPMENT OVERLAY - SCHEDULE 2 (DDO2)

Note: due to overlaps, some overlays may not be visible, and some colours may not match those in the legend

SIGNIFICANT LANDSCAPE OVERLAY (SLO)

SIGNIFICANT LANDSCAPE OVERLAY - SCHEDULE 1 (SLO1)

Note: due to overlaps, some overlays may not be visible, and some colours may not match those in the legend

Copyright © - State Government of Victoria

Disclaimer: This content is provided for information purposes only. No claim is made as to the accuracy or authenticity of the content. The Victorian Government does not accept any liability to any person for the information provided.

Read the full disclaimer at https://www2.delwp.vic.gov.au/disclaimer

Planning Overlays

OTHER OVERLAYS

Other overlays in the vicinity not directly affecting this land

DEVELOPMENT PLAN OVERLAY (DPO)

Note: due to overlaps, some overlays may not be visible, and some colours may not match those in the legend

Further Planning Information

Planning scheme data last updated on 15 June 2022.

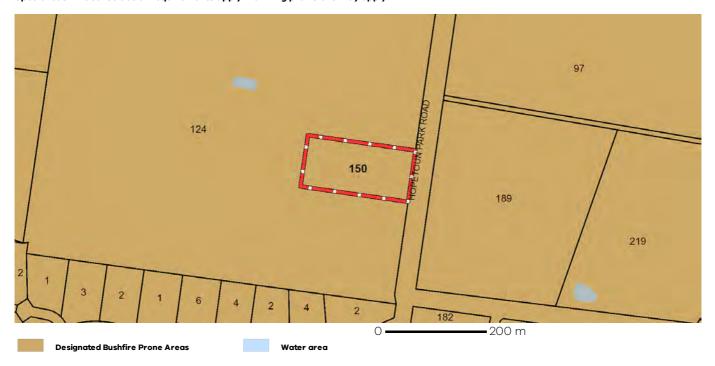
A planning scheme sets out policies and requirements for the use, development and protection of land. This report provides information about the zone and overlay provisions that apply to the selected land. Information about the State and local policy, particular, general and operational provisions of the local planning scheme that may affect the use of this land can be obtained by contacting the local council or by visiting https://www.planning.vic.gov.au

This report is NOT a Planning Certificate issued pursuant to Section 199 of the Planning and Environment Act 1987. It does not include information about exhibited planning scheme amendments, or zonings that may abut the land. To obtain a Planning Certificate go to Titles and Property Certificates at Landata - https://www.landata.vic.gov.au

For details of surrounding properties, use this service to get the Reports for properties of interest.

To view planning zones, overlay and heritage information in an interactive format visit https://mapshare.maps.vic.gov.au/vicplan

For other information about planning in Victoria visit https://www.planning.vic.gov.au


Copyright ® - State Government of Victoria
Disclaimer: This content is provided for information purposes only. No claim is made as to the accuracy or authenticity of the content. The Victorian Government does not accept any liability to any person for the information provided.

Read the full disclaimer at https://www2.delwp.vic.gov.au/disclaimer

Designated Bushfire Prone Areas

This property is in a designated bushfire prone area. Special bushfire construction requirements apply. Planning provisions may apply.

Designated bushfire prone areas as determined by the Minister for Planning are in effect from 8 September 2011 and amended from time to time.

The Building Regulations 2018 through application of the Building Code of Australia, apply bushfire protection standards for building works in designated bushfire prone areas.

Designated bushfire prone areas maps can be viewed on VicPlan at https://mapshare.maps.vic.gov.au/vicplan or at the relevant local council.

Note: prior to 8 September 2011, the whole of Victoria was designated as bushfire prone area for the purposes of the building control system.

Further information about the building control system and building in bushfire prone areas can be found on the Victorian Building Authority website https://www.vba.vic.gov.au

Copies of the Building Act and Building Regulations are available from http://www.legislation.vic.gov.au

For Planning Scheme Provisions in bushfire areas visit https://www.planning.vic.gov.au

Native Vegetation

Native plants that are indigenous to the region and important for biodiversity might be present on this property. This could include trees, shrubs, herbs, grasses or aquatic plants. There are a range of regulations that may apply including need to obtain a planning permit under Clause 52.17 of the local planning scheme. For more information see Native Vegetation (Clause 52.17) with local variations in Native Vegetation (Clause 52.17) Schedule

To help identify native vegetation on this property and the application of Clause 52.17 please visit the Native Vegetation Information Management system https://nvim.delwp.vic.gov.au/ and Native vegetation (environment.vic.gov.au/ or please contact your relevant council.

You can find out more about the natural values on your property through NatureKit NatureKit (environment.vic.gov.au)

Copyright ® - State Government of Victoria
Disclaimer: This content is provided for information purposes only. No claim is made as to the accuracy or authenticity of the content. The Victorian Government does not accept any liability to any person for the information provided.

Read the full disclaimer at https://www2.delwp.vic.gov.au/disclaimer

From www.planning.vic.gov.au at 16 June 2022 03:33 PM

PROPERTY DETAILS

Address: 189 HOPETOUN PARK ROAD HOPETOUN PARK 3340

Lot and Plan Number: Lot 1 LP145516 Standard Parcel Identifier (SPI): 1\LP145516

Local Government Area (Council): MOORABOOL www.moorabool.vic.gov.au

Council Property Number: 401250

Planning Scheme - Moorabool Planning Scheme: Moorabool

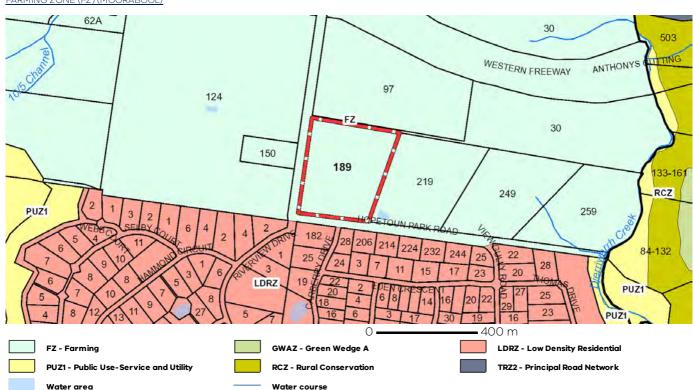
Directory Reference: Melway 335 D12

UTILITIES STATE ELECTORATES

Rural Water Corporation: **Southern Rural Water** Legislative Council: **WESTERN VICTORIA**

Urban Water Corporation: Western Water Legislative Assembly: **MELTON**

Melbourne Water: Inside drainage boundary


Power Distributor: **POWERCOR OTHER**

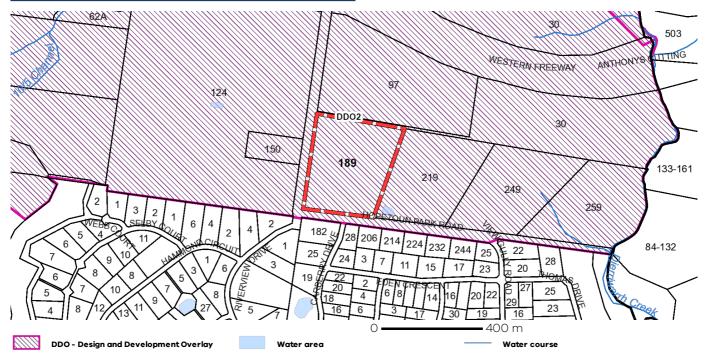
Registered Aboriginal Party: Wurundjeri Woi Wurrung Cultural

Heritage Aboriginal Corporation

View location in VicPlan **Planning Zones**

FARMING ZONE (FZ) (MOORABOOL)

Note: labels for zones may appear outside the actual zone - please compare the labels with the legend.


Copyright ® - State Government of Victoria
Disclaimer: This content is provided for information purposes only. No claim is made as to the accuracy or authenticity of the content. The Victorian Government does not accept any liability to any person for the information provided.

Read the full disclaimer at https://www2.delwp.vic.gov.au/disclaimer

Planning Overlays

DESIGN AND DEVELOPMENT OVERLAY (DDO) (MOORABOOL) DESIGN AND DEVELOPMENT OVERLAY - SCHEDULE 2 (DDO2) (MOORABOOL)

Note: due to overlaps, some overlays may not be visible, and some colours may not match those in the legend

Copyright © - State Government of Victoria

Disclaimer: This content is provided for information purposes only. No claim is made as to the accuracy or authenticity of the content. The Victorian Government does not accept any liability to any person for the information provided.

Read the full disclaimer at https://www2.delwp.vic.gov.au/disclaimer

OTHER OVERLAYS

Other overlays in the vicinity not directly affecting this land

DEVELOPMENT PLAN OVERLAY (DPO) (MOORABOOL)

DEVELOPMENT PLAN OVERLAY (DPO) (MELTON)

ENVIRONMENTAL SIGNIFICANCE OVERLAY (ESO) (MELTON)

ENVIRONMENTAL SIGNIFICANCE OVERLAY (ESO) (MOORABOOL)

LAND SUBJECT TO INUNDATION OVERLAY (LSIO) (MOORABOOL)

PUBLIC ACQUISITION OVERLAY (PAO) (MELTON)

PUBLIC ACQUISITION OVERLAY (PAO) (MOORABOOL)

SIGNIFICANT LANDSCAPE OVERLAY (SLO) (MOORABOOL)

Note: due to overlaps, some overlays may not be visible, and some colours may not match those in the legend

Further Planning Information

Planning scheme data last updated on 15 June 2022.

A planning scheme sets out policies and requirements for the use, development and protection of land. This report provides information about the zone and overlay provisions that apply to the selected land. Information about the State and local policy, particular, general and operational provisions of the local planning scheme that may affect the use of this land can be obtained by contacting the local council or by visiting https://www.planning.vic.gov.au

This report is NOT a Planning Certificate issued pursuant to Section 199 of the Planning and Environment Act 1987. It does not include information about exhibited planning scheme amendments, or zonings that may abut the land. To obtain a Planning Certificate go to Titles and Property Certificates at Landata - https://www.landata.vic.gov.au

For details of surrounding properties, use this service to get the Reports for properties of interest.

To view planning zones, overlay and heritage information in an interactive format visit https://mapshare.maps.vic.gov.au/vicplan

For other information about planning in Victoria visit https://www.planning.vic.gov.au

Copyright ® - State Government of Victoria
Disclaimer: This content is provided for information purposes only. No claim is made as to the accuracy or authenticity of the content. The Victorian Government does not accept any liability to any person for the information provided.

Read the full disclaimer at https://www2.delwp.vic.gov.au/disclaimer

Designated Bushfire Prone Areas

This property is in a designated bushfire prone area. Special bushfire construction requirements apply. Planning provisions may apply.

Designated bushfire prone areas as determined by the Minister for Planning are in effect from 8 September 2011 and amended from time to time.

The Building Regulations 2018 through application of the Building Code of Australia, apply bushfire protection standards for building works in designated bushfire prone areas.

Designated bushfire prone areas maps can be viewed on VicPlan at https://mapshare.maps.vic.gov.au/vicplan or at the relevant local council.

Note: prior to 8 September 2011, the whole of Victoria was designated as bushfire prone area for the purposes of the building control system.

Further information about the building control system and building in bushfire prone areas can be found on the Victorian Building Authority website https://www.vba.vic.gov.au

Copies of the Building Act and Building Regulations are available from http://www.legislation.vic.gov.au

For Planning Scheme Provisions in bushfire areas visit https://www.planning.vic.gov.au

Native Vegetation

Native plants that are indigenous to the region and important for biodiversity might be present on this property. This could include trees, shrubs, herbs, grasses or aquatic plants. There are a range of regulations that may apply including need to obtain a planning permit under Clause 52.17 of the local planning scheme. For more information see Native Vegetation (Clause 52.17) with local variations in Native Vegetation (Clause 52.17) Schedule

To help identify native vegetation on this property and the application of Clause 52.17 please visit the Native Vegetation Information Management system https://nvim.delwp.vic.gov.au/ and Native vegetation (environment.vic.gov.au/ or please contact your relevant council.

You can find out more about the natural values on your property through NatureKit NatureKit (environment.vic.gov.au)

Copyright ® - State Government of Victoria
Disclaimer: This content is provided for information purposes only. No claim is made as to the accuracy or authenticity of the content. The Victorian Government does not accept any liability to any person for the information provided.

Read the full disclaimer at https://www2.delwp.vic.gov.au/disclaimer

Notwithstanding this disclaimer, a vendor may rely on the information in this report for the purpose of a statement that land is in a bushfire prone area as required by section 32C (b) of the Sale of Land 1962 (Vic).

PLANNING PROPERTY REPORT: 189 HOPETOUN PARK ROAD HOPETOUN PARK 3340

From www.planning.vic.gov.au at 16 June 2022 03:34 PM

PROPERTY DETAILS

Address: 219 HOPETOUN PARK ROAD HOPETOUN PARK 3340

Lot and Plan Number: Lot 2 LP145516 Standard Parcel Identifier (SPI): 2\LP145516

Local Government Area (Council): MOORABOOL www.moorabool.vic.gov.au

Council Property Number: 401300

Planning Scheme - Moorabool Planning Scheme: Moorabool

Directory Reference: Melway 335 D12

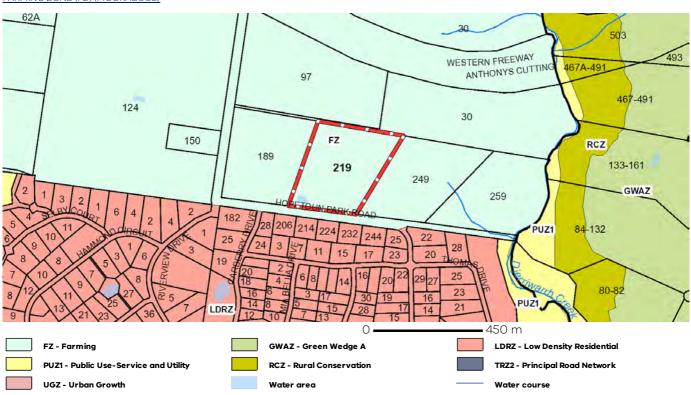
UTILITIES STATE ELECTORATES

Rural Water Corporation: **Southern Rural Water** Legislative Council: **WESTERN VICTORIA**

Urban Water Corporation: Western Water Legislative Assembly: **MELTON**

Melbourne Water: Inside drainage boundary

Power Distributor: **POWERCOR OTHER**


Registered Aboriginal Party: Wurundjeri Woi Wurrung Cultural

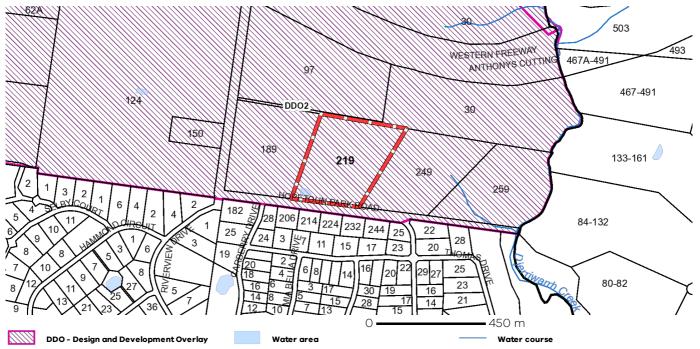
Heritage Aboriginal Corporation

Planning Zones

View location in VicPlan

FARMING ZONE (FZ) (MOORABOOL)

Note: labels for zones may appear outside the actual zone - please compare the labels with the legend.


Copyright ® - State Government of Victoria
Disclaimer: This content is provided for information purposes only. No claim is made as to the accuracy or authenticity of the content. The Victorian Government does not accept any liability to any person for the information provided.

Read the full disclaimer at https://www2.delwp.vic.gov.au/disclaimer

Planning Overlays

DESIGN AND DEVELOPMENT OVERLAY (DDO) (MOORABOOL) DESIGN AND DEVELOPMENT OVERLAY - SCHEDULE 2 (DDO2) (MOORABOOL)

Note: due to overlaps, some overlays may not be visible, and some colours may not match those in the legend

Copyright © - State Government of Victoria
Disclaimer: This content is provided for information purposes only. No claim is made as to the accuracy or authenticity of the content. The Victorian Government does not accept any liability to any person for the information provided.

Read the full disclaimer at https://www2.delwp.vic.gov.au/disclaimer

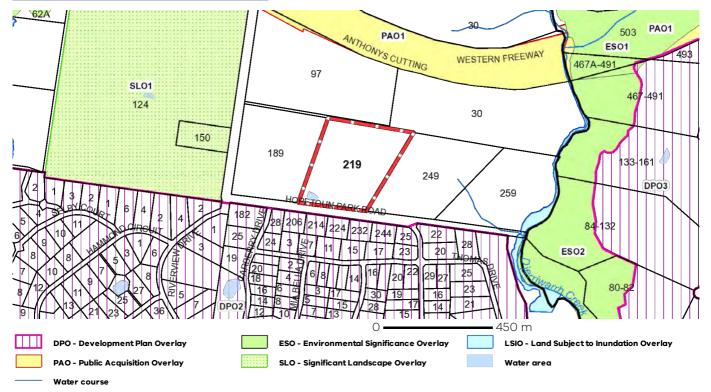
OTHER OVERLAYS

Other overlays in the vicinity not directly affecting this land

DEVELOPMENT PLAN OVERLAY (DPO) (MOORABOOL)

DEVELOPMENT PLAN OVERLAY (DPO) (MELTON)

ENVIRONMENTAL SIGNIFICANCE OVERLAY (ESO) (MELTON)


ENVIRONMENTAL SIGNIFICANCE OVERLAY (ESO) (MOORABOOL)

LAND SUBJECT TO INUNDATION OVERLAY (LSIO) (MOORABOOL)

PUBLIC ACQUISITION OVERLAY (PAO) (MELTON)

PUBLIC ACQUISITION OVERLAY (PAO) (MOORABOOL)

SIGNIFICANT LANDSCAPE OVERLAY (SLO) (MOORABOOL)

Note: due to overlaps, some overlays may not be visible, and some colours may not match those in the legend

Further Planning Information

Planning scheme data last updated on 15 June 2022.

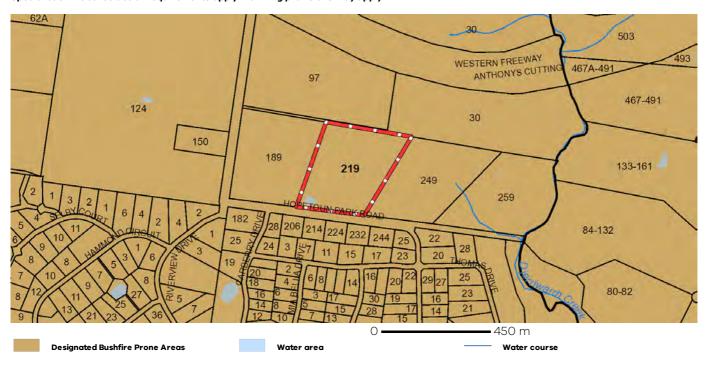
A planning scheme sets out policies and requirements for the use, development and protection of land. This report provides information about the zone and overlay provisions that apply to the selected land. Information about the State and local policy, particular, general and operational provisions of the local planning scheme that may affect the use of this land can be obtained by contacting the local council or by visiting https://www.planning.vic.gov.au

This report is NOT a Planning Certificate issued pursuant to Section 199 of the Planning and Environment Act 1987. It does not include information about exhibited planning scheme amendments, or zonings that may abut the land. To obtain a Planning Certificate go to Titles and Property Certificates at Landata - https://www.landata.vic.gov.au

For details of surrounding properties, use this service to get the Reports for properties of interest.

To view planning zones, overlay and heritage information in an interactive format visit https://mapshare.maps.vic.gov.au/vicplan

For other information about planning in Victoria visit https://www.planning.vic.gov.au


Copyright ® - State Government of Victoria
Disclaimer: This content is provided for information purposes only. No claim is made as to the accuracy or authenticity of the content. The Victorian Government does not accept any liability to any person for the information provided.

Read the full disclaimer at https://www2.delwp.vic.gov.au/disclaimer

Designated Bushfire Prone Areas

This property is in a designated bushfire prone area. Special bushfire construction requirements apply. Planning provisions may apply.

Designated bushfire prone areas as determined by the Minister for Planning are in effect from 8 September 2011 and amended from time to time.

The Building Regulations 2018 through application of the Building Code of Australia, apply bushfire protection standards for building works in designated bushfire prone areas.

Designated bushfire prone areas maps can be viewed on VicPlan at https://mapshare.maps.vic.gov.au/vicplan or at the relevant local council.

Note: prior to 8 September 2011, the whole of Victoria was designated as bushfire prone area for the purposes of the building control system.

Further information about the building control system and building in bushfire prone areas can be found on the Victorian Building Authority website https://www.vba.vic.gov.au

Copies of the Building Act and Building Regulations are available from http://www.legislation.vic.gov.au

For Planning Scheme Provisions in bushfire areas visit https://www.planning.vic.gov.au

Native Vegetation

Native plants that are indigenous to the region and important for biodiversity might be present on this property. This could include trees, shrubs, herbs, grasses or aquatic plants. There are a range of regulations that may apply including need to obtain a planning permit under Clause 52.17 of the local planning scheme. For more information see Native Vegetation (Clause 52.17) with local variations in Native Vegetation (Clause 52.17) Schedule

To help identify native vegetation on this property and the application of Clause 52.17 please visit the Native Vegetation Information Management system https://nvim.delwp.vic.gov.au/ and Native vegetation (environment.vic.gov.au) or please contact your relevant council.

You can find out more about the natural values on your property through NatureKit NatureKit (environment.vic.gov.au)

Copyright ® - State Government of Victoria
Disclaimer: This content is provided for information purposes only. No claim is made as to the accuracy or authenticity of the content. The Victorian Government does not accept any liability to any person for the information provided.

Read the full disclaimer at https://www2.delwp.vic.gov.au/disclaimer

From www.planning.vic.gov.au at 16 June 2022 03:34 PM

PROPERTY DETAILS

Address: 249 HOPETOUN PARK ROAD HOPETOUN PARK 3340

Lot and Plan Number: Lot 3 LP145516 Standard Parcel Identifier (SPI): 3\LP145516

Local Government Area (Council): MOORABOOL www.moorabool.vic.gov.au

Council Property Number: 401350

Planning Scheme - Moorabool Planning Scheme: Moorabool

Directory Reference: Melway 335 E12

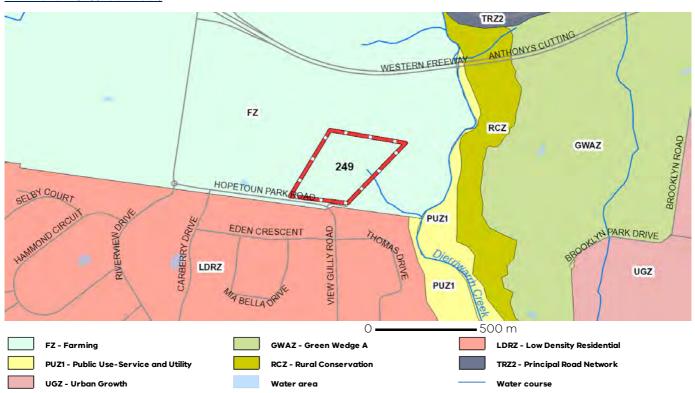
UTILITIES STATE ELECTORATES

Rural Water Corporation: **Southern Rural Water** Legislative Council: **WESTERN VICTORIA**

Urban Water Corporation: Western Water Legislative Assembly: **MELTON**

Melbourne Water: Inside drainage boundary

Power Distributor: **POWERCOR OTHER**


Registered Aboriginal Party: Wurundjeri Woi Wurrung Cultural

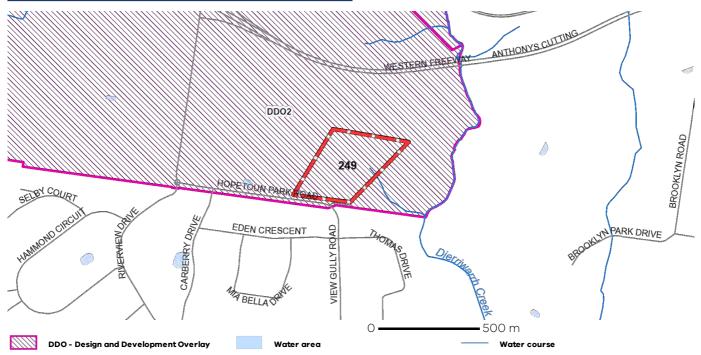
Heritage Aboriginal Corporation

Planning Zones

View location in VicPlan

FARMING ZONE (FZ) (MOORABOOL)

Note: labels for zones may appear outside the actual zone - please compare the labels with the legend.


Copyright ® - State Government of Victoria
Disclaimer: This content is provided for information purposes only. No claim is made as to the accuracy or authenticity of the content. The Victorian Government does not accept any liability to any person for the information provided.

Read the full disclaimer at https://www2.delwp.vic.gov.au/disclaimer

Planning Overlays

DESIGN AND DEVELOPMENT OVERLAY (DDO) (MOORABOOL) DESIGN AND DEVELOPMENT OVERLAY - SCHEDULE 2 (DDO2) (MOORABOOL)

Note: due to overlaps, some overlays may not be visible, and some colours may not match those in the legend

Copyright © - State Government of Victoria

Disclaimer: This content is provided for information purposes only. No claim is made as to the accuracy or authenticity of the content. The Victorian Government does not accept any liability to any person for the information provided.

Read the full disclaimer at https://www2.delwp.vic.gov.au/disclaimer

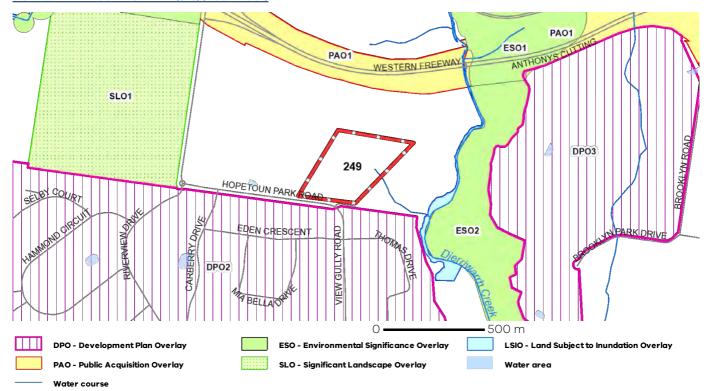
OTHER OVERLAYS

Other overlays in the vicinity not directly affecting this land

DEVELOPMENT PLAN OVERLAY (DPO) (MOORABOOL)

DEVELOPMENT PLAN OVERLAY (DPO) (MELTON)

ENVIRONMENTAL SIGNIFICANCE OVERLAY (ESO) (MELTON)


ENVIRONMENTAL SIGNIFICANCE OVERLAY (ESO) (MOORABOOL)

LAND SUBJECT TO INUNDATION OVERLAY (LSIO) (MOORABOOL)

PUBLIC ACQUISITION OVERLAY (PAO) (MELTON)

PUBLIC ACQUISITION OVERLAY (PAO) (MOORABOOL)

SIGNIFICANT LANDSCAPE OVERLAY (SLO) (MOORABOOL)

Note: due to overlaps, some overlays may not be visible, and some colours may not match those in the legend

Further Planning Information

Planning scheme data last updated on 15 June 2022.

A planning scheme sets out policies and requirements for the use, development and protection of land. This report provides information about the zone and overlay provisions that apply to the selected land. Information about the State and local policy, particular, general and operational provisions of the local planning scheme that may affect the use of this land can be obtained by contacting the local council or by visiting https://www.planning.vic.gov.au

This report is NOT a Planning Certificate issued pursuant to Section 199 of the Planning and Environment Act 1987. It does not include information about exhibited planning scheme amendments, or zonings that may abut the land. To obtain a Planning Certificate go to Titles and Property Certificates at Landata - https://www.landata.vic.gov.au

For details of surrounding properties, use this service to get the Reports for properties of interest.

To view planning zones, overlay and heritage information in an interactive format visit https://mapshare.maps.vic.gov.au/vicplan

For other information about planning in Victoria visit https://www.planning.vic.gov.au


Copyright ® - State Government of Victoria
Disclaimer: This content is provided for information purposes only. No claim is made as to the accuracy or authenticity of the content. The Victorian Government does not accept any liability to any person for the information provided.

Read the full disclaimer at https://www2.delwp.vic.gov.au/disclaimer

Designated Bushfire Prone Areas

This property is in a designated bushfire prone area. Special bushfire construction requirements apply. Planning provisions may apply.

Designated bushfire prone areas as determined by the Minister for Planning are in effect from 8 September 2011 and amended from time to time.

The Building Regulations 2018 through application of the Building Code of Australia, apply bushfire protection standards for building works in designated bushfire prone areas.

Designated bushfire prone areas maps can be viewed on VicPlan at https://mapshare.maps.vic.gov.au/vicplan or at the relevant local council.

Note: prior to 8 September 2011, the whole of Victoria was designated as bushfire prone area for the purposes of the building control system.

Further information about the building control system and building in bushfire prone areas can be found on the Victorian Building Authority website https://www.vba.vic.gov.au

Copies of the Building Act and Building Regulations are available from http://www.legislation.vic.gov.au

For Planning Scheme Provisions in bushfire areas visit https://www.planning.vic.gov.au

Native Vegetation

Native plants that are indigenous to the region and important for biodiversity might be present on this property. This could include trees, shrubs, herbs, grasses or aquatic plants. There are a range of regulations that may apply including need to obtain a planning permit under Clause 52.17 of the local planning scheme. For more information see Native Vegetation (Clause 52.17) with local variations in Native Vegetation (Clause 52.17) Schedule

To help identify native vegetation on this property and the application of Clause 52.17 please visit the Native Vegetation Information Management system https://nvim.delwp.vic.gov.au/ and Native vegetation (environment.vic.gov.au/ or please contact your relevant council.

You can find out more about the natural values on your property through NatureKit NatureKit (environment.vic.gov.au)

Copyright ® - State Government of Victoria
Disclaimer: This content is provided for information purposes only. No claim is made as to the accuracy or authenticity of the content. The Victorian Government does not accept any liability to any person for the information provided.

Read the full disclaimer at https://www2.delwp.vic.gov.au/disclaimer

From www.planning.vic.gov.au at 16 June 2022 03:35 PM

PROPERTY DETAILS

Address: 259 HOPETOUN PARK ROAD HOPETOUN PARK 3340

Lot and Plan Number: Lot 4 LP145516 Standard Parcel Identifier (SPI): 4\LP145516

Local Government Area (Council): MOORABOOL www.moorabool.vic.gov.au

Council Property Number: 401400

Planning Scheme - Moorabool Planning Scheme: Moorabool

Directory Reference: Melway 335 E12

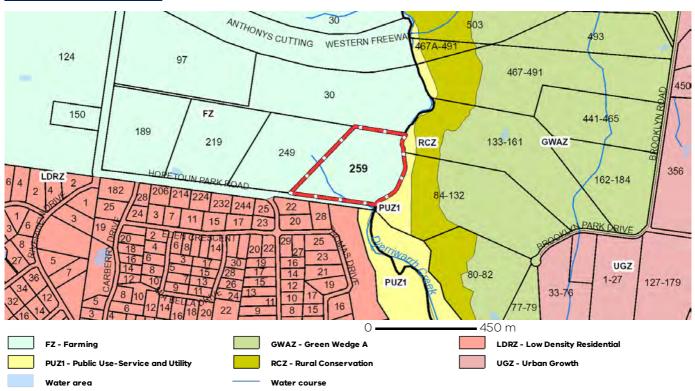
UTILITIES STATE ELECTORATES

Rural Water Corporation: **Southern Rural Water** Legislative Council: **WESTERN VICTORIA**

Urban Water Corporation: Western Water Legislative Assembly: **MELTON**

Melbourne Water: Inside drainage boundary

Power Distributor: **POWERCOR OTHER**


Registered Aboriginal Party: Wurundjeri Woi Wurrung Cultural

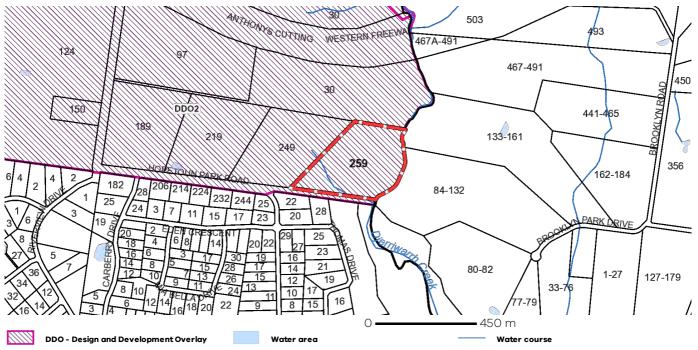
Heritage Aboriginal Corporation

View location in VicPlan

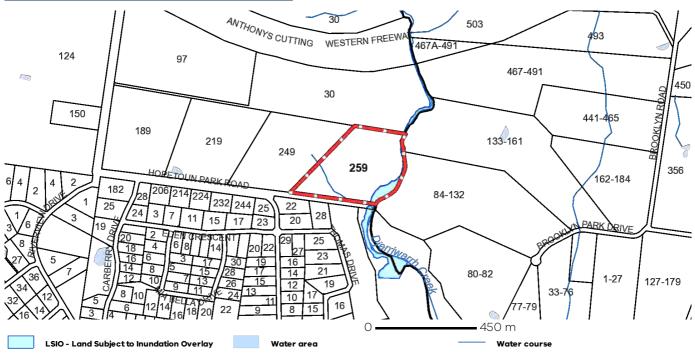
Planning Zones

FARMING ZONE (FZ) (MOORABOOL)

Note: labels for zones may appear outside the actual zone - please compare the labels with the legend.


Copyright ® - State Government of Victoria
Disclaimer: This content is provided for information purposes only. No claim is made as to the accuracy or authenticity of the content. The Victorian Government does not accept any liability to any person for the information provided.

Read the full disclaimer at https://www2.delwp.vic.gov.au/disclaimer


Planning Overlays

DESIGN AND DEVELOPMENT OVERLAY (DDO) (MOORABOOL) DESIGN AND DEVELOPMENT OVERLAY - SCHEDULE 2 (DDO2) (MOORABOOL)

Note: due to overlaps, some overlays may not be visible, and some colours may not match those in the legend

LAND SUBJECT TO INUNDATION OVERLAY (LSIO) (MOORABOOL)

Note: due to overlaps, some overlays may not be visible, and some colours may not match those in the legend

Copyright ® - State Government of Victoria
Disclaimer: This content is provided for information purposes only. No claim is made as to the accuracy or authenticity of the content. The Victorian Government does not accept any liability to any person for the information provided.

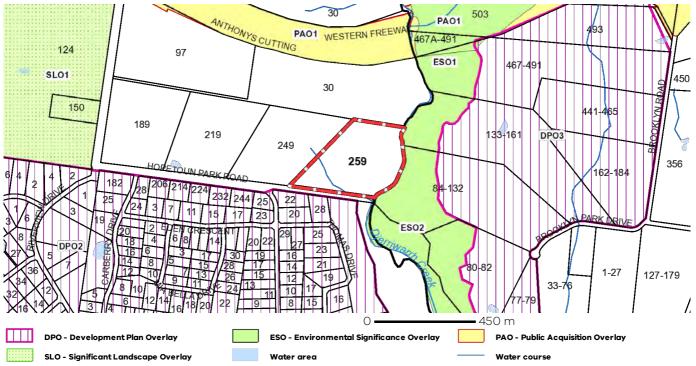
Read the full disclaimer at https://www2.delwp.vic.gov.au/disclaimer

Planning Overlays

OTHER OVERLAYS

Other overlays in the vicinity not directly affecting this land

DEVELOPMENT PLAN OVERLAY (DPO) (MOORABOOL)


DEVELOPMENT PLAN OVERLAY (DPO) (MELTON)

ENVIRONMENTAL SIGNIFICANCE OVERLAY (ESO) (MELTON)

PUBLIC ACQUISITION OVERLAY (PAO) (MELTON)

PUBLIC ACQUISITION OVERLAY (PAO) (MOORABOOL)

SIGNIFICANT LANDSCAPE OVERLAY (SLO) (MOORABOOL)

 $Note: due \ to \ overlaps, some \ overlaps \ may \ not \ be \ visible, \ and \ some \ colours \ may \ not \ match \ those \ in \ the \ legend$

Copyright © - State Government of Victoria

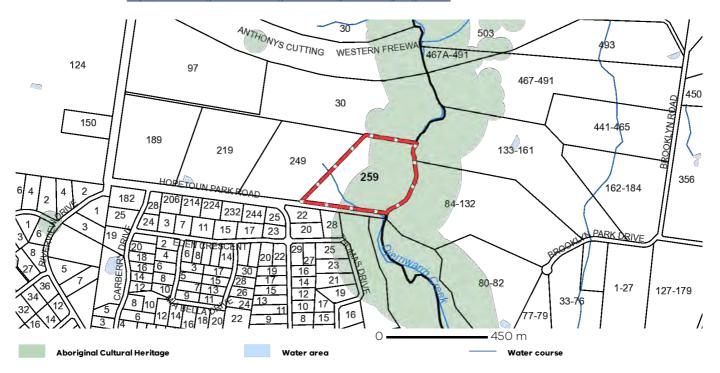
Disclaimer: This content is provided for information purposes only. No claim is made as to the accuracy or authenticity of the content. The Victorian Government does not accept any liability to any person for the information provided.

Read the full disclaimer at https://www2.delwp.vic.gov.au/disclaimer

Areas of Aboriginal Cultural Heritage Sensitivity

All or part of this property is an 'area of cultural heritage sensitivity'.

'Areas of cultural heritage sensitivity' are defined under the Aboriginal Heritage Regulations 2018, and include registered Aboriginal cultural heritage places and land form types that are generally regarded as more likely to contain Aboriginal cultural heritage.


Under the Aboriginal Heritage Regulations 2018, 'areas of cultural heritage sensitivity' are one part of a two part trigger which require a 'cultural heritage management plan' be prepared where a listed 'high impact activity' is proposed.

If a significant land use change is proposed (for example, a subdivision into 3 or more lots), a cultural heritage management plan may be triggered. One or two dwellings, works ancillary to a dwelling, services to a dwelling, alteration of buildings and minor works are examples of works exempt from this requirement.

Under the Aboriginal Heritage Act 2006, where a cultural heritage management plan is required, planning permits, licences and work authorities cannot be issued unless the cultural heritage management plan has been approved for the activity.

For further information about whether a Cultural Heritage Management Plan is required go to http://www.aav.nrms.net.au/aavQuestion1.aspx

More information, including links to both the Aboriginal Heritage Act 2006 and the Aboriginal Heritage Regulations 2018, and the Aboriginal Heritage Regulatiocan also be found here - https://www.aboriginalvictoria.vic.gov.au/aboriginal-heritage-legislation

Copyright ® - State Government of Victoria
Disclaimer: This content is provided for information purposes only. No claim is made as to the accuracy or authenticity of the content. The Victorian Government does not accept any liability to any person for the information provided.

Read the full disclaimer at https://www2.delwp.vic.gov.au/disclaimer

Further Planning Information

Planning scheme data last updated on 15 June 2022.

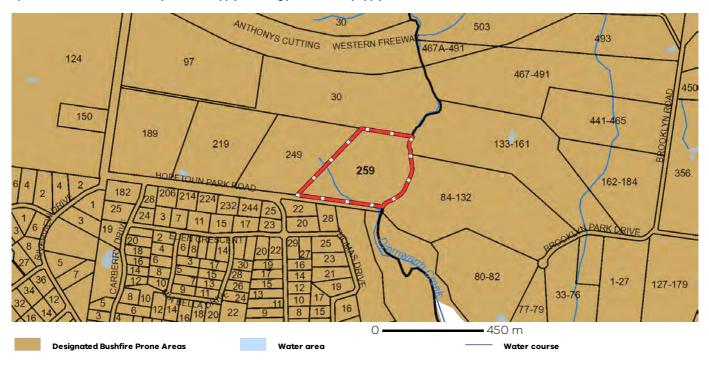
A planning scheme sets out policies and requirements for the use, development and protection of land. This report provides information about the zone and overlay provisions that apply to the selected land. Information about the State and local policy, particular, general and operational provisions of the local planning scheme that may affect the use of this land can be obtained by contacting the local council or by visiting https://www.planning.vic.gov.au

This report is NOT a Planning Certificate issued pursuant to Section 199 of the Planning and Environment Act 1987. It does not include information about exhibited planning scheme amendments, or zonings that may abut the land. To obtain a Planning Certificate go to Titles and Property Certificates at Landata - https://www.landata.vic.gov.au

For details of surrounding properties, use this service to get the Reports for properties of interest.

To view planning zones, overlay and heritage information in an interactive format visit https://mapshare.maps.vic.gov.au/vicplan

For other information about planning in Victoria visit https://www.planning.vic.gov.au


Copyright ® - State Government of Victoria
Disclaimer: This content is provided for information purposes only. No claim is made as to the accuracy or authenticity of the content. The Victorian Government does not accept any liability to any person for the information provided.

Read the full disclaimer at https://www2.delwp.vic.gov.au/disclaimer

Designated Bushfire Prone Areas

This property is in a designated bushfire prone area. Special bushfire construction requirements apply. Planning provisions may apply.

Designated bushfire prone areas as determined by the Minister for Planning are in effect from 8 September 2011 and amended from time to time.

The Building Regulations 2018 through application of the Building Code of Australia, apply bushfire protection standards for building works in designated bushfire prone areas.

Designated bushfire prone areas maps can be viewed on VicPlan at https://mapshare.maps.vic.gov.au/vicplan or at the relevant local council.

Note: prior to 8 September 2011, the whole of Victoria was designated as bushfire prone area for the purposes of the building control system.

Further information about the building control system and building in bushfire prone areas can be found on the Victorian Building Authority website https://www.vba.vic.gov.au

Copies of the Building Act and Building Regulations are available from http://www.legislation.vic.gov.au

For Planning Scheme Provisions in bushfire areas visit https://www.planning.vic.gov.au

Native Vegetation

Native plants that are indigenous to the region and important for biodiversity might be present on this property. This could include trees, shrubs, herbs, grasses or aquatic plants. There are a range of regulations that may apply including need to obtain a planning permit under Clause 52.17 of the local planning scheme. For more information see Native Vegetation (Clause 52.17) with local variations in Native Vegetation (Clause 52.17) Schedule

To help identify native vegetation on this property and the application of Clause 52.17 please visit the Native Vegetation Information Management system https://nvim.delwp.vic.gov.au/ and Native vegetation (environment.vic.gov.au) or please contact your relevant council.

You can find out more about the natural values on your property through NatureKit NatureKit (environment.vic.gov.au)

Copyright ® - State Government of Victoria
Disclaimer: This content is provided for information purposes only. No claim is made as to the accuracy or authenticity of the content. The Victorian Government does not accept any liability to any person for the information provided.

Read the full disclaimer at https://www2.delwp.vic.gov.au/disclaimer

Appendix D – Title Documents and Plans

Copyright State of Victoria. No part of this publication may be reproduced except as permitted by the Copyright Act 1968 (Cth), to comply with a statutory requirement or pursuant to a written agreement. The information is only valid at the time and in the form obtained from the LANDATA REGD TM System. None of the State of Victoria, its agents or contractors, accepts responsibility for any subsequent publication or reproduction of the information.

The Victorian Government acknowledges the Traditional Owners of Victoria and pays respects to their ongoing connection to their Country, History and Culture. The Victorian Government extends this respect to their Elders,

REGISTER SEARCH STATEMENT (Title Search) Transfer of Land Act 1958

Page 1 of 1

VOLUME 11047 FOLIO 765

Security no : 124092130119U Produced 30/08/2021 10:42 AM

LAND DESCRIPTION

Lot 2 on Plan of Subdivision 604556J. PARENT TITLE Volume 03442 Folio 380 Created by instrument PS604556J 08/01/2008

REGISTERED PROPRIETOR

Estate Fee Simple Sole Proprietor

BACCHUS MARSH PROPERTY GROUP PTY LTD of 484 ST KILDA ROAD MELBOURNE VIC 8001 AQ111043C 03/08/2017

ENCUMBRANCES, CAVEATS AND NOTICES

Any encumbrances created by Section 98 Transfer of Land Act 1958 or Section 24 Subdivision Act 1988 and any other encumbrances shown or entered on the plan set out under DIAGRAM LOCATION below.

AGREEMENT Section 173 Planning and Environment Act 1987 AF483359P 21/11/2007

DIAGRAM LOCATION

SEE PS604556J FOR FURTHER DETAILS AND BOUNDARIES

ACTIVITY IN THE LAST 125 DAYS

NIL

-----END OF REGISTER SEARCH STATEMENT-----END OF REGISTER SEARCH STATEMENT-----

Additional information: (not part of the Register Search Statement)

Street Address: 124 HOPETOUN PARK ROAD HOPETOUN PARK VIC 3340

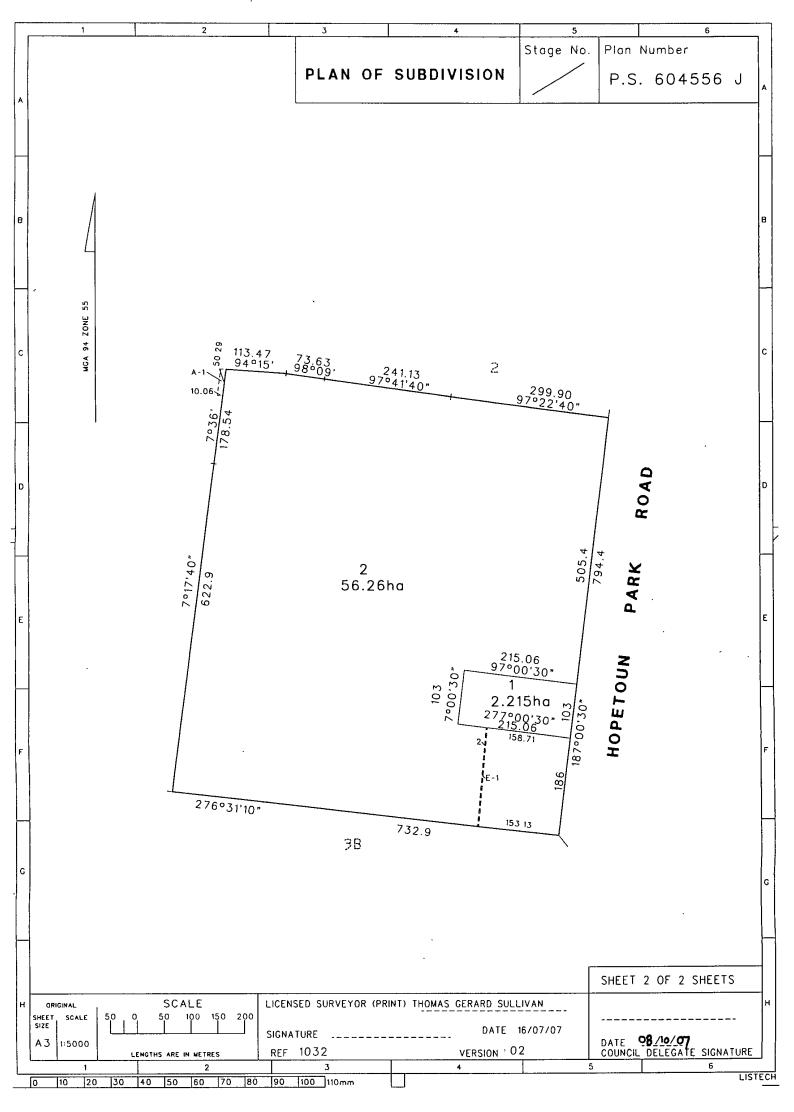
DOCUMENT END

Title 11047/765 Page 1 of 1

Imaged Document Cover Sheet

The document following this cover sheet is an imaged document supplied by LANDATA®, Victorian Land Registry Services.

Document Type	Plan
Document Identification	PS604556J
Number of Pages	2
(excluding this cover sheet)	
Document Assembled	30/08/2021 10:44


Copyright and disclaimer notice:

© State of Victoria. This publication is copyright. No part may be reproduced by any process except in accordance with the provisions of the Copyright Act 1968 (Cth) and for the purposes of Section 32 of the Sale of Land Act 1962 or pursuant to a written agreement. The information is only valid at the time and in the form obtained from the LANDATA® System. None of the State of Victoria, LANDATA®, Victorian Land Registry Services Pty. Ltd. ABN 86 627 986 396 as trustee for the Victorian Land Registry Services Trust ABN 83 206 746 897 accept responsibility for any subsequent release, publication or reproduction of the information.

The document is invalid if this cover sheet is removed or altered.

	PLAN	OF S	UBDIV	ISION		Stage No.	LTO use only	P.S. 604556 J	
Location of Land Parish: Merrimu Township: —— Section: 7 Crown Allotment: 3 Crown Portion: ——				Council Certification and Endorsement Council Name: Maararbaal Shire Ref: 2006 - 200 1. This plan is certified under section 6 of the Subdivision Act 1988. 2. This plan is certified under section 11(7) of the Subdivision Act 1988- Bote of original certification under section 6 / / 3. This is a statement of compliance issued under section 21 of the					
LTO base record: Title References: Vol 3442 Fol 380 (PART) Last Plan Reference: — Postal Address: 124 Hopetoun Park Road Hopetoun Park, 3340					Subdivision Act 1988. Open Space (i) A requirement for public open space under section 18 Subdivision Act 1988 hear has not been made. (ii) The requirement has been satisified.				
MGA 94 Co-ordinates: N 279 330 (Of approx. centre of land in plan) E 5825 520 Zone 55 Vesting of Roods or Reserves Identifier Council/Bady/Person Nil Nil			Council Delegate Council cool Date 08 /10 / 2007						
				Noto	itions				
Depth Limitation: Does not apply				Staging This is not astaged subdivision Planning Permit No. 2006 - 200					
			Fas	ement	To be cor This sur	aimed Survey /	licable connected to pe	Parwan PM 30 & PM 43 Merrimu PM 85 & PM 86 rmanent marks no(s). PM SR 71K3	
				ement				LTO use only Statement of Compliance	
Legend: A - Appurtenant Easement E - Encumberi			ng Eosement R - Encumbering Eosement (Road) / Exemption Statement			/ Exemption Statement			
Easement Reference	Purpose		Width (Metres)	Origin		Land Benefited	d/In Favour Df	Received	
E-1 A-1	Water Supply Corriogeway			This P		CT VOL 3	Lat 1 on this plan CT VOL 3442 FOL 380	Date 24/12/2007	
						·		PLAN REGISTERED TIME 2:45 PM DATE 08/01/2008 B. Creenland Assistant Registrar of Titles SHEET 1 OF 2 SHEETS	
יווס אד	LIVAN & ASS	OCIATES	PTYIT		D SURVEYO	R(PRINT) THOMAS	GERARD SULLIVAN		
ACN 12 ABN 45 PO BOX	0 363 073 5 120 363 073 (1394 BAKER 689 362	3		SIGNAT REF	URE	 VERSION	DATE , 16/07/07 N O2	DATE 08/10/07 COUNCIL DELEGATE SIGNATURE	

Original sheet size A3

Imaged Document Cover Sheet

The document following this cover sheet is an imaged document supplied by LANDATA®, Victorian Land Registry Services.

Document Type	Instrument
Document Identification	AF483359P
Number of Pages	7
(excluding this cover sheet)	
Document Assembled	30/08/2021 10:44

Copyright and disclaimer notice:

© State of Victoria. This publication is copyright. No part may be reproduced by any process except in accordance with the provisions of the Copyright Act 1968 (Cth) and for the purposes of Section 32 of the Sale of Land Act 1962 or pursuant to a written agreement. The information is only valid at the time and in the form obtained from the LANDATA® System. None of the State of Victoria, LANDATA®, Victorian Land Registry Services Pty. Ltd. ABN 86 627 986 396 as trustee for the Victorian Land Registry Services Trust ABN 83 206 746 897 accept responsibility for any subsequent release, publication or reproduction of the information.

The document is invalid if this cover sheet is removed or altered.

Delivered by LANDATA®, timestamp 30/08/2021 10:44 Page 1 of 7

State of Victoria. This publication is copyright. No part may be reproduced by any process except in accordance with the provisions of the Copyright Act 1968 (Cth) and for the purposes of Section 32 of the Sale of Land Act 1962 or pursuant to a written agreement. The information is only valid at the time and in the form obtained from the LANDATA® System. None of the State of Victoria, LANDATA®, Victorian Land Registry Services Pty. Ltd. ABN 86 627 986 396 as trustee for the Victorian Land Registry Services Trust ABN 83 206 746 897 accept responsibility for any subsequent release, publication or reproduction of the information.

APPLICATION BY RESPONSIBLE AUTHORITY, RELEVANT AUTHORITY, REFERRAL AUTHORITY OR COUNCIL FOR THE MAKING OF A RECORDING OF AN AGREEMENT.

Section 181 (1) Pla	nning and Environment Act 19	987 OF 7	AF483359P
Lodged by:	C.	M.O.	
Name:	JILLIAN THOMAS	TORIA	-
Phone:	(03) 5367 2311		
Address:	BACCHUS MARSH	3340	<u>-</u>
Ref:: Customer No.:	7157 1618W		
The authority or counties Planning and Register for the land	uncil having made an agreemen Environment Act 1987 requires d:	it referred to in sections a recording to be	on 181 (21) of made in the
Land:	Certificate of Title Volume 344	2 Folio 380	
	Lots 1, 2 and 3 TP604721 H 124 Hopetoun Park Road, Hop	oetoun Park	
Authority:	Moorabool Shire Council 15 Stead Street, Ballan 3342		
Section and Act un	der which agreement made:	Section 173 Planni Environment Act 1	
A copy of this agre	ement is attached to this applica	ation.	
Date:	12 November 2007		
Signed: LOW	ne Whon		

Name of Officer: Leanne Wilson

AF483359P
21/11/2007 \$102 173

MOORABOOL SHIRE COUNCIL

and

FRASER PROPERTY INVESTMENTS PTY LTD ACN 081 049 229

SECTION 173 AGREEMENT

JILLIAN THOMAS
Lawyer
10 Amstel Close
BACCHUS MARSH 3340

Tel: 5367 231 I DX: 33104 Bacchus Marsh

> Fax: 5367 4717 Ref: JT:7157

AF483359P 21/11/2007 \$102 173

PLANNING AND ENVIRONMENT ACT 1987

SECTION 173 AGREEMENT

THIS AGREEMENT is made the 12th day of November

2007

BETWEEN:

MOORABOOL SHIRE COUNCIL of 197 Main Street Bacchus Marsh 3340 ("Council")

- and -

FRASER PROPERTY INVESTMENTS PTY LTD ACN 081 049 229 of 175 Main Street, Bacchus Marsh 3340 ("the Owner")

INTRODUCTION

- A. Council is a responsible authority pursuant to the Act for the Planning Scheme.
- B. The Owner is the registered proprietor of the subject land.
- C. On 29 September 2006 Council issued Planning Permit No. 2006-200 ("the Planning Permit") allowing the subject land to be divided into two lots.
- D. The parties enter into this agreement to achieve and advance the objectives of planning in Victoria and the objectives of the Planning Scheme in respect of the subject land.

IT IS AGREED

1. **DEFINITIONS**

In this agreement the words and expressions set out in this clause have the following meanings unless the context admits otherwise:

"the Act" means the Planning and Environment Act 1987.

- "this agreement" means this agreement and any agreement executed by the parties expressed to be supplemental to this agreement.
- "the mortgagee" means the person or persons registered or entitled to be registered by the Registrar of Titles as a mortgagee of the subject land.
- "Owner" means the person or persons registered or entitled from time to time to be registered by the Registrar of Titles as proprietor or proprietors of an estate in fee simple of the subject land or any part of it and includes a mortgagee-in-possession.
- "Planning Permit" means the Planning Permit referred to in Recital C of this agreement.
- "Planning Scheme" means the Moorabool Planning Scheme and any other planning scheme which applies to the subject land.

"subject land" means the land situated at Lots 1, 2 and 3 on Title Plan 604721H, 124 Hopetoun Park Road, Hopetoun Park 3340 and being the land referred to in Certificate of Title Volume 3442 Folio 380.

AF483359P

21/11/2007 \$102

2. INTERPRETATION

In this agreement unless the context admits otherwise:

- (a) The singular includes the plural and vice versa.
- (b) A reference to a gender includes a reference to each other gender.
- (c) A reference to a person includes a reference to a firm, corporation or other corporate body and that person's successors in law.
- (d) If a party consists of more than one person this agreement binds them jointly and each of them severally.
- (e) A word or expression used in this agreement has its ordinary meaning unless that word or expression is defined in this agreement. If a word or expression is not defined in this agreement and it is defined in the Act it has the meaning as defined in the Act.
- (f) The introductory clauses in this agreement are and will be deemed to form part of this agreement.
- (g) The obligations of the Owner under this agreement will take effect as separate and several covenants which are annexed to and run at law and equity with the subject land provided that if the subject land is subdivided, this agreement must be read and applied so that each subsequent owner of a lot is only responsible for those covenants and obligations which relate to that owner's lot.

3. SPECIFIC OBLIGATIONS OF THE OWNER

The Owner covenants and agrees that

- (a) any lot in the subdivision will not be further subdivided pursuant to the provisions of the Planning Scheme which is current at the date of this agreement;
- (b) it is agreed that this obligation shall cease to have force and effect should the land be re-zoned at any time for residential purposes.

4. OWNER'S WARRANTIES

Without limiting the operation or effect which this agreement has, the Owner warrants that apart from the Owner and any other person who has consented in writing to this agreement, no other person has any interest, either legal or equitable, in the subject land which may be affected by this agreement.

AF483359P 21/11/2007 \$102 173

5. SUCCESSORS IN TITLE

Without limiting the operation or effect which this agreement has, the Owner must ensure that, until such time as a memorandum of this agreement is registered on the title to the subject land, successors in title shall be required to:

- (a) give effect to and do all acts and sign all documents which will require those successors to give effect to this agreement; and
- (b) execute a deed agreeing to be bound by the terms of this agreement.

6. GENERAL MATTERS

6.1 Notices

A notice or other communication required or permitted to be served by a party on another party must be in writing and may be served;

- (a) by delivering it personally to that party;
- (b) by sending it by prepaid post addressed to that party at the address set out in this agreement or subsequently notified to each party from time to time; or
- (c) by sending it by facsimile provided that a communication sent by facsimile shall be confirmed immediately in writing by the sending party by hand delivery or prepaid post.

6.2 A notice or other communication is deemed served:

- (a) if delivered, on the next following business day;
- (b) if posted, on the expiration of two days after the date of posting; or
- (c) if sent by facsimile, on the next following business day unless the receiving party has requested retransmission before the end of that business day.

6.3 No Waiver

Any time or other indulgence granted by Council to the Owner or any variation of the terms and conditions of this agreement or any judgment or order obtained by Council against the Owner will not in any way amount to a waiver of any of the rights or remedies of Council in relation to the terms of this agreement.

6.4 Severability

If a court, arbitrator, tribunal or other competent authority determines that a word, phrase, sentence, paragraph or clause of this agreement is unenforceable, illegal or void then it must be severed and the other provisions of this agreement will remain operative.

4

7. COMMENCEMENT OF AGREEMENT

Unless otherwise provided in this agreement, this agreement commences from the date of this agreement.

)

EXECUTED by the parties on the date set out at the commencement of this agreement.

SIGNED for and on behalf of the Moorabool
Shire Council under Delegated Authority
pursuant to Section 188(1)(b) Section (2)(b) and
Section 171 (2)(a) of the Planning and
Environment Act 1987 by:

Chief Executive Office

THE COMMON SEAL of FRASER PROPERTY INVESTMENTS PTY LTD ACN 081 049 229 was

affixed in the presence of authorised persons:

Director

Full Name: Graeme John Rayner

Address: 175 Main Street Bacchus Marsh 3340

Company Secretary

Full Name: Marcus Hamilton Rayner

Address: 175 Main Street Bacchus Marsh 3340

081 049 229 COMMON

SEAL

Commonwealth Bank of Australia as Mortgagee of registered mortgage numbered AC261594T HEREBY CONSENTS to the Owner entering into this agreement and in the event that the Mortgagee becomes mortgagee in possession agrees to be bound by the covenants and conditions of the agreement.

SIGNED SEALED and DELIVERED in Parramatta, New South Wales for end on behalf of COMMONWEALTH BANK OF AUSTRALIA ABN 48 123 123 124 by its Attorney

Flizabeth Constable under Power dated 11 December 2000, a certified copy of which is filed in Permanent Order Book No. 277 at Page 016 who certifies that he/she is Manager Post Settlements

OF COMMONWEALT

KYLIE HOOMANS

Elizabeth Constable

Cytopyright State of Victoria. No part of this publication may be reproduced except as permitted by the Copyright Act 1968 (Cth), to comply with a statutory requirement or pursuant to a written agreement. The information is only valid at the time and in the form obtained from the LANDATA REGD TM System. None of the State of Victoria, its agents or contractors, accepts responsibility for any subsequent publication or reproduction of the information.

The Victorian Government acknowledges the Traditional Owners of Victoria and pays respects to their ongoing connection to their Country, History and Culture. The Victorian Government extends this respect to their Elders,

REGISTER SEARCH STATEMENT (Title Search) Transfer of Land Act 1958

Page 1 of 1

VOLUME 11047 FOLIO 766

Security no : 124092130124P Produced 30/08/2021 10:42 AM

LAND DESCRIPTION

Lot 2 on Title Plan 604721H.
PARENT TITLE Volume 03442 Folio 380
Created by instrument PS604556J 08/01/2008

REGISTERED PROPRIETOR

Estate Fee Simple Sole Proprietor

BACCHUS MARSH PROPERTY GROUP PTY LTD of 484 ST KILDA ROAD MELBOURNE VIC 8001 AQ111043C 03/08/2017

ENCUMBRANCES, CAVEATS AND NOTICES

Any encumbrances created by Section 98 Transfer of Land Act 1958 or Section 24 Subdivision Act 1988 and any other encumbrances shown or entered on the plan set out under DIAGRAM LOCATION below.

AGREEMENT Section 173 Planning and Environment Act 1987 AF483359P 21/11/2007

DIAGRAM LOCATION

SEE TP604721H FOR FURTHER DETAILS AND BOUNDARIES

ACTIVITY IN THE LAST 125 DAYS

NIL

-----END OF REGISTER SEARCH STATEMENT------

Additional information: (not part of the Register Search Statement)

Street Address: 124 HOPETOUN PARK ROAD HOPETOUN PARK VIC 3340

DOCUMENT END

Title 11047/766 Page 1 of 1

Cytopyright State of Victoria. No part of this publication may be reproduced except as permitted by the Copyright Act 1968 (Cth), to comply with a statutory requirement or pursuant to a written agreement. The information is only valid at the time and in the form obtained from the LANDATA REGD TM System. None of the State of Victoria, its agents or contractors, accepts responsibility for any subsequent publication or reproduction of the information.

The Victorian Government acknowledges the Traditional Owners of Victoria and pays respects to their ongoing connection to their Country, History and Culture. The Victorian Government extends this respect to their Elders,

REGISTER SEARCH STATEMENT (Title Search) Transfer of Land Act 1958

Page 1 of 1

VOLUME 11047 FOLIO 767

Security no : 124092130123Q Produced 30/08/2021 10:42 AM

LAND DESCRIPTION

Lot 3 on Title Plan 604721H.
PARENT TITLE Volume 03442 Folio 380
Created by instrument PS604556J 08/01/2008

REGISTERED PROPRIETOR

Estate Fee Simple Sole Proprietor

BACCHUS MARSH PROPERTY GROUP PTY LTD of 484 ST KILDA ROAD MELBOURNE VIC 8001 AQ111043C 03/08/2017

ENCUMBRANCES, CAVEATS AND NOTICES

Any encumbrances created by Section 98 Transfer of Land Act 1958 or Section 24 Subdivision Act 1988 and any other encumbrances shown or entered on the plan set out under DIAGRAM LOCATION below.

AGREEMENT Section 173 Planning and Environment Act 1987 AF483359P 21/11/2007

DIAGRAM LOCATION

SEE TP604721H FOR FURTHER DETAILS AND BOUNDARIES

ACTIVITY IN THE LAST 125 DAYS

NIL

-----END OF REGISTER SEARCH STATEMENT------

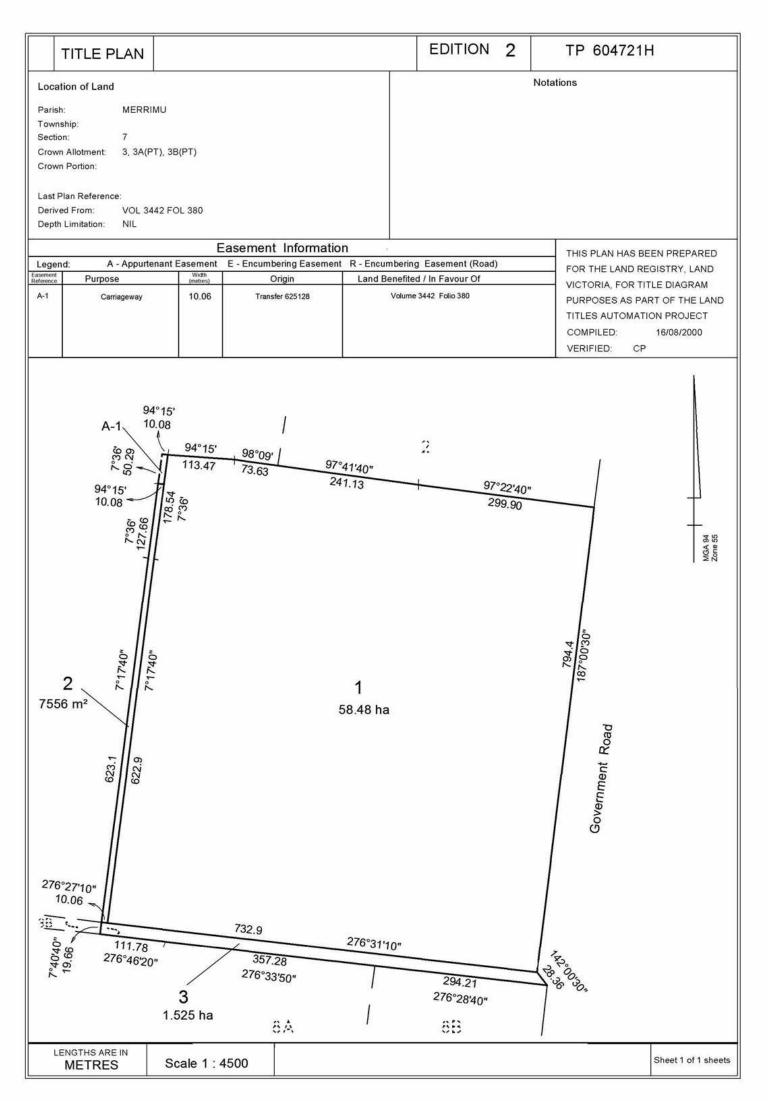
Additional information: (not part of the Register Search Statement)

Street Address: 124 HOPETOUN PARK ROAD HOPETOUN PARK VIC 3340

DOCUMENT END

Title 11047/767 Page 1 of 1

Imaged Document Cover Sheet


The document following this cover sheet is an imaged document supplied by LANDATA®, Victorian Land Registry Services.

Document Type	Plan
Document Identification	TP604721H
Number of Pages	2
(excluding this cover sheet)	
Document Assembled	30/08/2021 10:44

Copyright and disclaimer notice:

© State of Victoria. This publication is copyright. No part may be reproduced by any process except in accordance with the provisions of the Copyright Act 1968 (Cth) and for the purposes of Section 32 of the Sale of Land Act 1962 or pursuant to a written agreement. The information is only valid at the time and in the form obtained from the LANDATA® System. None of the State of Victoria, LANDATA®, Victorian Land Registry Services Pty. Ltd. ABN 86 627 986 396 as trustee for the Victorian Land Registry Services Trust ABN 83 206 746 897 accept responsibility for any subsequent release, publication or reproduction of the information.

The document is invalid if this cover sheet is removed or altered.

MODIFICATION TABLE

RECORD OF ALL ADDITIONS OR CHANGES TO THE PLAN

PLAN NUMBER TP604721H

WARNING: THE IMAGE OF THIS DOCUMENT OF THE REGISTER HAS BEEN DIGITALLY AMENDED.

NO FURTHER AMENDMENTS ARE TO BE MADE TO THE ORIGINAL DOCUMENT OF THE REGISTER.

		E MADE TO THE ORIGINAL DOCU				
AFFECTED LAND/PARCEL	LAND/PARCEL IDENTIFIER CREATED	MODIFICATION	DEALING NUMBER	DATE	EDITION NUMBER	ASSISTANT REGISTRAR OF TITLES
LOT 1		SUBDIVISION	PS604556J	8/1/08	2	B.P.G.

Cytopyright State of Victoria. No part of this publication may be reproduced except as permitted by the Copyright Act 1968 (Cth), to comply with a statutory requirement or pursuant to a written agreement. The information is only valid at the time and in the form obtained from the LANDATA REGD TM System. None of the State of Victoria, its agents or contractors, accepts responsibility for any subsequent publication or reproduction of the information.

The Victorian Government acknowledges the Traditional Owners of Victoria and pays respects to their ongoing connection to their Country, History and Culture. The Victorian Government extends this respect to their Elders,

REGISTER SEARCH STATEMENT (Title Search) Transfer of Land Act 1958

Page 1 of 1

VOLUME 11047 FOLIO 764

Security no : 124092131606D Produced 30/08/2021 11:14 AM

LAND DESCRIPTION

Lot 1 on Plan of Subdivision 604556J. PARENT TITLE Volume 03442 Folio 380 Created by instrument PS604556J 08/01/2008

REGISTERED PROPRIETOR

Estate Fee Simple
Joint Proprietors
CAIN PETER SIDON
SHAYE RENEE SIDON both of 6 RUXTON WAY HOPETOUN PARK VIC 3340
AQ141810P 14/08/2017

ENCUMBRANCES, CAVEATS AND NOTICES

MORTGAGE AQ141811M 14/08/2017 POLICE FINANCIAL SERVICES LTD

Any encumbrances created by Section 98 Transfer of Land Act 1958 or Section 24 Subdivision Act 1988 and any other encumbrances shown or entered on the plan set out under DIAGRAM LOCATION below.

AGREEMENT Section 173 Planning and Environment Act 1987 AF483359P 21/11/2007

DIAGRAM LOCATION

DOCUMENT END

SEE PS604556J FOR FURTHER DETAILS AND BOUNDARIES

ACTIVITY IN THE LAST 125 DAYS

NIL
-----END OF REGISTER SEARCH STATEMENT----Additional information: (not part of the Register Search Statement)
Street Address: 150 HOPETOUN PARK ROAD HOPETOUN PARK VIC 3340

Title 11047/764 Page 1 of 1

Imaged Document Cover Sheet

The document following this cover sheet is an imaged document supplied by LANDATA®, Victorian Land Registry Services.

Document Type	Plan
Document Identification	PS604556J
Number of Pages	2
(excluding this cover sheet)	
Document Assembled	30/08/2021 11:19

Copyright and disclaimer notice:

© State of Victoria. This publication is copyright. No part may be reproduced by any process except in accordance with the provisions of the Copyright Act 1968 (Cth) and for the purposes of Section 32 of the Sale of Land Act 1962 or pursuant to a written agreement. The information is only valid at the time and in the form obtained from the LANDATA® System. None of the State of Victoria, LANDATA®, Victorian Land Registry Services Pty. Ltd. ABN 86 627 986 396 as trustee for the Victorian Land Registry Services Trust ABN 83 206 746 897 accept responsibility for any subsequent release, publication or reproduction of the information.

The document is invalid if this cover sheet is removed or altered.

DТ	A AI	ΛE	CHEDIVICION
PL	AN	UF.	SUBDIVISION

Stage No.

LTO use only

EDITION 1 P.S. 604556 J

Location of Land

Parish: Merrimu Township: --Section: 7

Crown Allotment: 3 Crown Portion: -

LTO base record: Title References:

Vol 3442 Fol 380 (PART)

Last Plan Reference: -

Identifier

Postal Address: 124 Hopetoun Park Road Hopetoun Park, 3340

MGA 94 Co-ordinates: N 279 330

(Of approx. centre of land in plan) E 5825 520 Zone 55

Vesting of Roods or Reserves

Nil Nil

Council/Body/Person

Council Certification and Endorsement

Council Nome: Moorarbool Shire Ref: 2006 - 200 Council

1. This plan is certified under section 6 of the Subdivision Act 1988.

is cortified under section 11(7) of the Subdivisio -Date of original contification-under-ocction-6

This is a statement of compliance issued under Subdivision Act 1988:

Open Spoce

(i) A requirement for public open space under section 18 Subdivision Act 1988 has was not been made.

(ii) The-requirement has been satisified

liii) The requirement is to be satisified in Stage

Council Delegate

Council cool

Date 08 /10 / 2007

					٠			
N	lo	٠	\sim	٠	ŧ	\sim	2	•
ľ	v	·	u	Ł	1	v		3

This is not a staged subdivision Staging Depth Limitation: Does not apply Planning Permit No. 2006 - 200 Survey:- This plan is based on survey. Parwan PM 30 & PM 43 To be completed where applicable Merrimu PM 85 & PM 86. This survey has been connected to permanent marks no(s). PM SR 71K3

In proclaimed Survey Area no. —

Easement Information

Legend: A - Appurtenant Easement

Purpose

Easement

E - Encumbering Eosement R - Encumbering Eosement (Road)

Statement of Compliance / Exemption Statement

Received Land Benefited/In Favour Df

Date 24/12/2007

Reference	Purpose	(Metres)	Origin	Zana Beneritearin (avaar 5)	-
E-1	Water Supply	2	This Plan	Lot 1 on this plan	
A-1	Corriogeway	10.06	Transfer 625128	CT VOL 3442 FOL 380	

Origin

PLAN REGISTERED TIME 2:45 PM DATE 08/01/ 2008

LTO use only

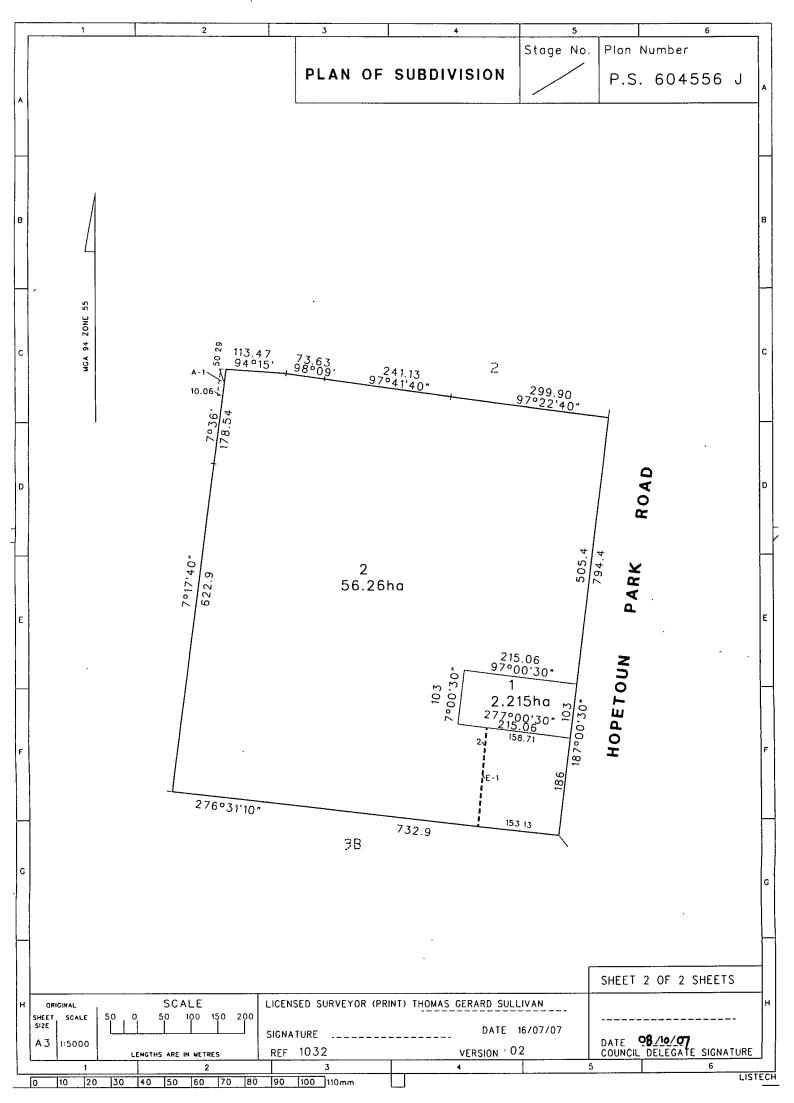
Assistant Registrar of Titles

SHEET 1 OF 2 SHEETS

TG SULLIVAN & ASSOCIATES PTY LTD ACN 120 363 073

ABN 45 120 363 073 PO BOX 1394 BAKERY HILL 3354

PH 53 689 362


LICENSED SURVEYOR(PRINT) THOMAS GERARD SULLIVAN

SIGNATURE _____ DATE , 16/07/07 REF 1032 VERSION 02

DATE 08/10/07

COUNCIL DELEGATE SIGNATURE

Original sheet size A3

Imaged Document Cover Sheet

The document following this cover sheet is an imaged document supplied by LANDATA®, Victorian Land Registry Services.

Document Type	Instrument
Document Identification	AF483359P
Number of Pages	7
(excluding this cover sheet)	
Document Assembled	30/08/2021 11:19

Copyright and disclaimer notice:

© State of Victoria. This publication is copyright. No part may be reproduced by any process except in accordance with the provisions of the Copyright Act 1968 (Cth) and for the purposes of Section 32 of the Sale of Land Act 1962 or pursuant to a written agreement. The information is only valid at the time and in the form obtained from the LANDATA® System. None of the State of Victoria, LANDATA®, Victorian Land Registry Services Pty. Ltd. ABN 86 627 986 396 as trustee for the Victorian Land Registry Services Trust ABN 83 206 746 897 accept responsibility for any subsequent release, publication or reproduction of the information.

The document is invalid if this cover sheet is removed or altered.

Delivered by LANDATA®, timestamp 30/08/2021 11:19 Page 1 of 7

State of Victoria. This publication is copyright. No part may be reproduced by any process except in accordance with the provisions of the Copyright Act 1968 (Cth) and for the purposes of Section 32 of the Sale of Land Act 1962 or pursuant to a written agreement. The information is only valid at the time and in the form obtained from the LANDATA® System. None of the State of Victoria, LANDATA®, Victorian Land Registry Services Pty. Ltd. ABN 86 627 986 396 as trustee for the Victorian Land Registry Services Trust ABN 83 206 746 897 accept responsibility for any subsequent release, publication or reproduction of the information.

APPLICATION BY RESPONSIBLE AUTHORITY, RELEVANT AUTHORITY, REFERRAL AUTHORITY OR COUNCIL FOR THE MAKING OF A RECORDING OF AN AGREEMENT.

Section 181 (1) Pla	nning and Environment Act 19	987 OF 7	AF483359P
Lodged by:	C.	M.O.	
Name:	JILLIAN THOMAS	TORIA	-
Phone:	(03) 5367 2311		
Address:	BACCHUS MARSH	3340	<u>-</u> -
Ref:: Customer No.:	7157 1618W		
The authority or counties Planning and Register for the land	uncil having made an agreemen Environment Act 1987 requires d:	t referred to in sections a recording to be	on 181 (21) of made in the
Land:	Certificate of Title Volume 344	2 Folio 380	
	Lots 1, 2 and 3 TP604721 H 124 Hopetoun Park Road, Hop	oetoun Park	
Authority:	Moorabool Shire Council 15 Stead Street, Ballan 3342		
Section and Act un	nder which agreement made:	Section 173 Planni Environment Act 1	
A copy of this agre	ement is attached to this applica	ation.	
Date:	12 November 2007		
Signed: LOW	ne Whon		

Name of Officer: Leanne Wilson

2007

DATED

AF483359P
21/11/2007 \$102 173

MOORABOOL SHIRE COUNCIL

and

FRASER PROPERTY INVESTMENTS PTY LTD ACN 081 049 229

SECTION 173 AGREEMENT

JILLIAN THOMAS
Lawyer
10 Amstel Close
BACCHUS MARSH 3340

Tel: 5367 231I DX: 33104 Bacchus Marsh

Fax: 5367 4717 Ref: JT:7157

AF483359P 21/11/2007 \$102 173

PLANNING AND ENVIRONMENT ACT 1987

SECTION 173 AGREEMENT

THIS AGREEMENT is made the 12th day of November

2007

BETWEEN:

MOORABOOL SHIRE COUNCIL of 197 Main Street Bacchus Marsh 3340 ("Council")

- and -

FRASER PROPERTY INVESTMENTS PTY LTD ACN 081 049 229 of 175 Main Street, Bacchus Marsh 3340 ("the Owner")

INTRODUCTION

- A. Council is a responsible authority pursuant to the Act for the Planning Scheme.
- B. The Owner is the registered proprietor of the subject land.
- C. On 29 September 2006 Council issued Planning Permit No. 2006-200 ("the Planning Permit") allowing the subject land to be divided into two lots.
- D. The parties enter into this agreement to achieve and advance the objectives of planning in Victoria and the objectives of the Planning Scheme in respect of the subject land.

IT IS AGREED

1. **DEFINITIONS**

In this agreement the words and expressions set out in this clause have the following meanings unless the context admits otherwise:

"the Act" means the Planning and Environment Act 1987.

"this agreement" means this agreement and any agreement executed by the parties expressed to be supplemental to this agreement.

"the mortgagee" means the person or persons registered or entitled to be registered by the Registrar of Titles as a mortgagee of the subject land.

- "Owner" means the person or persons registered or entitled from time to time to be registered by the Registrar of Titles as proprietor or proprietors of an estate in fee simple of the subject land or any part of it and includes a mortgagee-in-possession.
- "Planning Permit" means the Planning Permit referred to in Recital C of this agreement.
- "Planning Scheme" means the Moorabool Planning Scheme and any other planning scheme which applies to the subject land.

"subject land" means the land situated at Lots 1, 2 and 3 on Title Plan 604721H, 124 Hopetoun Park Road, Hopetoun Park 3340 and being the land referred to in Certificate of Title Volume 3442 Folio 380.

AF483359P

21/11/2007 \$102

2. INTERPRETATION

In this agreement unless the context admits otherwise:

- (a) The singular includes the plural and vice versa.
- (b) A reference to a gender includes a reference to each other gender.
- (c) A reference to a person includes a reference to a firm, corporation or other corporate body and that person's successors in law.
- (d) If a party consists of more than one person this agreement binds them jointly and each of them severally.
- (e) A word or expression used in this agreement has its ordinary meaning unless that word or expression is defined in this agreement. If a word or expression is not defined in this agreement and it is defined in the Act it has the meaning as defined in the Act.
- (f) The introductory clauses in this agreement are and will be deemed to form part of this agreement.
- (g) The obligations of the Owner under this agreement will take effect as separate and several covenants which are annexed to and run at law and equity with the subject land provided that if the subject land is subdivided, this agreement must be read and applied so that each subsequent owner of a lot is only responsible for those covenants and obligations which relate to that owner's lot.

3. SPECIFIC OBLIGATIONS OF THE OWNER

The Owner covenants and agrees that

- (a) any lot in the subdivision will not be further subdivided pursuant to the provisions of the Planning Scheme which is current at the date of this agreement;
- (b) it is agreed that this obligation shall cease to have force and effect should the land be re-zoned at any time for residential purposes.

4. OWNER'S WARRANTIES

Without limiting the operation or effect which this agreement has, the Owner warrants that apart from the Owner and any other person who has consented in writing to this agreement, no other person has any interest, either legal or equitable, in the subject land which may be affected by this agreement.

AF483359P 21/11/2007 \$102 173

5. SUCCESSORS IN TITLE

Without limiting the operation or effect which this agreement has, the Owner must ensure that, until such time as a memorandum of this agreement is registered on the title to the subject land, successors in title shall be required to:

- (a) give effect to and do all acts and sign all documents which will require those successors to give effect to this agreement; and
- (b) execute a deed agreeing to be bound by the terms of this agreement.

6. GENERAL MATTERS

6.1 Notices

A notice or other communication required or permitted to be served by a party on another party must be in writing and may be served;

- (a) by delivering it personally to that party;
- (b) by sending it by prepaid post addressed to that party at the address set out in this agreement or subsequently notified to each party from time to time; or
- (c) by sending it by facsimile provided that a communication sent by facsimile shall be confirmed immediately in writing by the sending party by hand delivery or prepaid post.

6.2 A notice or other communication is deemed served:

- (a) if delivered, on the next following business day;
- (b) if posted, on the expiration of two days after the date of posting; or
- (c) if sent by facsimile, on the next following business day unless the receiving party has requested retransmission before the end of that business day.

6.3 No Waiver

Any time or other indulgence granted by Council to the Owner or any variation of the terms and conditions of this agreement or any judgment or order obtained by Council against the Owner will not in any way amount to a waiver of any of the rights or remedies of Council in relation to the terms of this agreement.

6.4 Severability

If a court, arbitrator, tribunal or other competent authority determines that a word, phrase, sentence, paragraph or clause of this agreement is unenforceable, illegal or void then it must be severed and the other provisions of this agreement will remain operative.

4

7. COMMENCEMENT OF AGREEMENT

Unless otherwise provided in this agreement, this agreement commences from the date of this agreement.

)

EXECUTED by the parties on the date set out at the commencement of this agreement.

SIGNED for and on behalf of the Moorabool
Shire Council under Delegated Authority
pursuant to Section 188(1)(b) Section (2)(b) and
Section 171 (2)(a) of the Planning and
Environment Act 1987 by:

Chief Executive Office

THE COMMON SEAL of FRASER PROPERTY INVESTMENTS PTY LTD ACN 081 049 229 was

affixed in the presence of authorised persons:

Director

Full Name: Graeme John Rayner

Address: 175 Main Street Bacchus Marsh 3340

Company Secretary

Full Name: Marcus Hamilton Rayner

Address: 175 Main Street Bacchus Marsh 3340

081 049 229 COMMON

SEAL

Commonwealth Bank of Australia as Mortgagee of registered mortgage numbered AC261594T HEREBY CONSENTS to the Owner entering into this agreement and in the event that the Mortgagee becomes mortgagee in possession agrees to be bound by the covenants and conditions of the agreement.

SIGNED SEALED and DELIVERED
in Parramatta, New South Wales for end on behalf
of COMMONWEALTH BANK OF AUSTRALIA
ABN 48 123 123 124 by its Attorney
Elizabeth Constable
under Power dated 11 December 2000, a certified
copy of which is filed in Permanent Order Book
No. 277 at Page 016 who certifies that he/she is
Manager Post Settlements

OF COMMONWEALT

IVUE USSMANS

KYLIE HOOMANS

Elizabeth Constable

Copyright State of Victoria. No part of this publication may be reproduced except as permitted by the Copyright Act 1968 (Cth), to comply with a statutory requirement or pursuant to a written agreement. The information is only valid at the time and in the form obtained from the LANDATA REGD TM System. None of the State of Victoria, its agents or contractors, accepts responsibility for any subsequent publication or reproduction of the information.

The Victorian Government acknowledges the Traditional Owners of Victoria and pays respects to their ongoing connection to their Country, History and Culture. The Victorian Government extends this respect to their Elders, past present and emerging

REGISTER SEARCH STATEMENT (Title Search) Transfer of Land Act 1958

Page 1 of 1

VOLUME 10580 FOLIO 163

Security no : 124092145091V Produced 30/08/2021 03:23 PM

LAND DESCRIPTION

Lot 3 on Plan of Subdivision 630818G.

PARENT TITLES :

Volume 00452 Folio 353 Volume 08916 Folio 320 Volume 09358 Folio 881

Volume 10067 Folio 551

Created by instrument PS423865C 01/05/2001

REGISTERED PROPRIETOR

Estate Fee Simple
Joint Proprietors
TERRENCE ANTHONY SHEA
MARY ANN SHEA both of HOPETOUN PARK RD BACCHUS MARSH 3340
X491718L 23/05/2001

ENCUMBRANCES, CAVEATS AND NOTICES

Any encumbrances created by Section 98 Transfer of Land Act 1958 or Section 24 Subdivision Act 1988 and any other encumbrances shown or entered on the plan set out under DIAGRAM LOCATION below.

DIAGRAM LOCATION

SEE PS630818G FOR FURTHER DETAILS AND BOUNDARIES

ACTIVITY IN THE LAST 125 DAYS

NIL

-----END OF REGISTER SEARCH STATEMENT------

Additional information: (not part of the Register Search Statement)

Street Address: 97 HOPETOUN PARK ROAD HOPETOUN PARK VIC 3340

DOCUMENT END

Title 10580/163 Page 1 of 1

Imaged Document Cover Sheet

The document following this cover sheet is an imaged document supplied by LANDATA®, Victorian Land Registry Services.

Document Type	Plan
Document Identification	PS630818G
Number of Pages	3
(excluding this cover sheet)	
Document Assembled	30/08/2021 15:24

Copyright and disclaimer notice:

© State of Victoria. This publication is copyright. No part may be reproduced by any process except in accordance with the provisions of the Copyright Act 1968 (Cth) and for the purposes of Section 32 of the Sale of Land Act 1962 or pursuant to a written agreement. The information is only valid at the time and in the form obtained from the LANDATA® System. None of the State of Victoria, LANDATA®, Victorian Land Registry Services Pty. Ltd. ABN 86 627 986 396 as trustee for the Victorian Land Registry Services Trust ABN 83 206 746 897 accept responsibility for any subsequent release, publication or reproduction of the information.

The document is invalid if this cover sheet is removed or altered.

PLAN OF SUBDIVISION

Under Section 35 of the Subdivision Act 1988

STAGE NO. LRS use only

EDITION 1 PS630818G

Location of Land

Parish: MERRIMU Township:

Crown Allotment: 1(PART), 4A & 4B

Crown Portion:

Section: 7

Title Reference: VOL.10580 FOL.161, VOL.10580 FOL.162

VOL.10580 FOL.163

Last Plan Reference: LOTS 1, 2 & 3 PS423865C

Postal Address: HOPETOUN PARK ROAD, (at time of subdivision) HOPETOUN PARK 3340

30 KYLE LANE, HOPETOUN PARK 3340

97 EXFORD WEIR ROAD, HOPETOUN PARK 3340

MGA94 Co-ordinates (of approx. centre of plan)

280 400 N 5 825 900

ZONE: 55

Vesting of Roads and / or Reserves

Roads and reserves vest in the council/body/person named when the appropriate vesting date is recorded or transfer registered. Only road and reserves marked thus (%) vest upon registration of this plan.

ldentifier	Council/Body/Person			
RESERVE No.1	ROADS CORPORATION			
RESERVE No.2	ROADS CORPORATION			
RESERVE No.3	ROADS CORPORATION			
RESERVE No.4	ROADS CORPORATION			

Council Certification and Endorsement

Council Name: MOORABOOL SHIRE COUNCIL

Ref: 2009-258

- A. This is a plan under section 35 of the Subdivision Act 1988 which does not create any additional lots.
- B. This plan is exempt from Part 3 of the Subdivision Act 1988.
- C. This is a plan under section 35 of the Subdivision-Act-1988 which-creates (an) additional lat(s).
- D. It is certified under section 6 of the Subdivision Act 1988.
- E. It is certified under section 11(7) of the Subdivision Act 1988.
- F. Date-of-original certification under section 6.
- G. This is a statement of compliance under section 21 of the Subdivision Act 1988.

Council Delegate

Date 18 111 , 09 Set & M

Re certified under section-11(7) of the Subdivision Act 1988

Founcil Delegate. Council Seal

Notations

This is/is not a staged subdivision. Staging Planning Permit No: NOT APPLICABLE

Depth Limitation DOES NOT APPLY

Underlined dimensions shown thus 123.45 are not the result of this survey.

Area of Lot 1 & 2(PT) is deduced from title.

All the land is to be acquired free from all encumbrances other than any easements specified on this plan.

Land to be acquired by compulsory process: RESERVE No.1, RESERVÉ No.2, RESERVE No.3 & RESERVE No.4

Land to be acquired by agreement: NIL

The land being subdivided is enclosed within thick continuous lines.

Survey: This plan is based on survey and is compiled from Roads Corporation SP21794B.

This plan has been connected to permanent marks no(s) 56, 85, 86, 110, 691 & 119. In proclaimed Survey Area no. -

Easement	Information

E - Encumbering Easement or Condition in Crown Grant in the Nature of an Easement A - Appurtenant Easement R - Encumbering Easement (Road) Legend:

Easements marked (—) are existing easements.
Easements marked (+) are created upon registration of this plan.
Easements marked (*) are created when the appropriate vesting date is recorded or transfer registered.
Easements marked (#) are removed when the appropriate vesting date is recorded or transfer registered. Width

Symbol	Land	Purpose	(Metres)	Origin	Land Benefited/In Favour Of
-	E-1	POWER LINE	15	LP129899	LOTS ON LP129899
!					

LRS use only

Statement of Compliance/ **Exemption Statement**

Received 🔻

1/02/10 Date

LRS use only

PLAN REGISTERED

Time 4.06 PM

Date 16/02/2010

RHills

Assistant Registrar of Titles

1, of 3 Sheets

ROADS CORPORATION

Subject

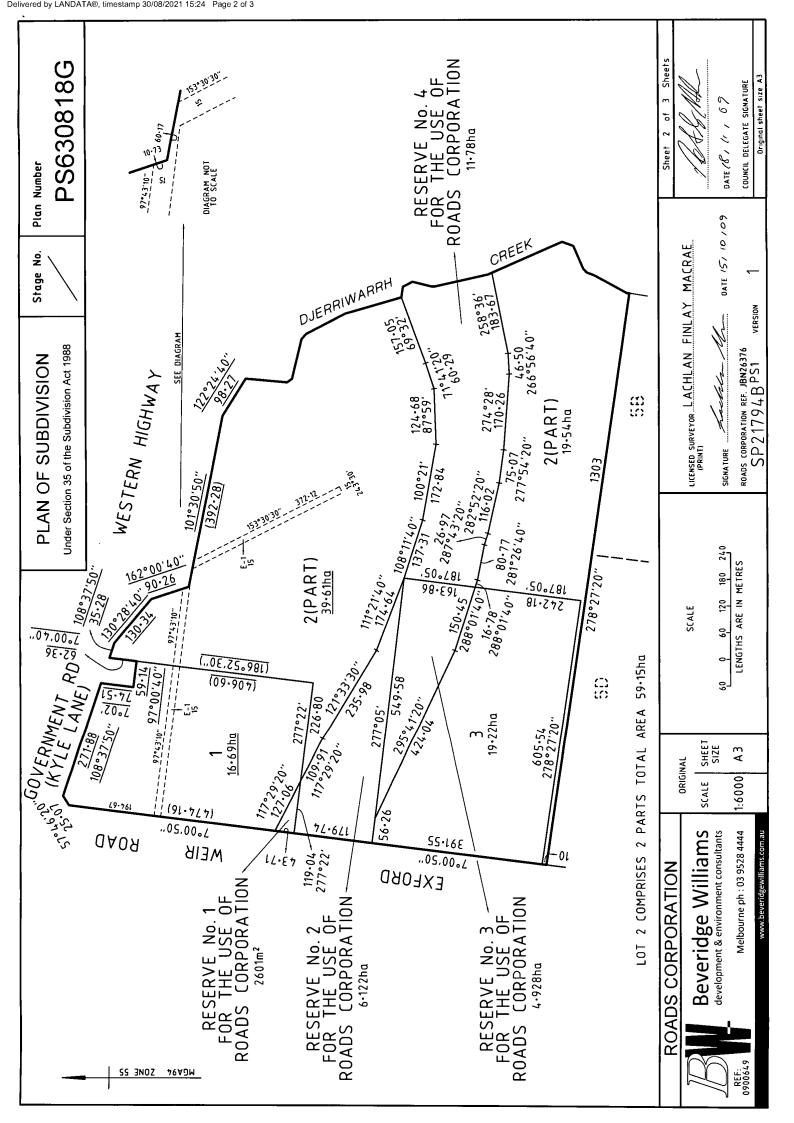
Beveridge Williams development & environment consultants

Melbourne ph: 03 9528 4444

www.beveridgewilliams.com.au

LICENSED SURVEYOR LACHLAN FINLAY MACRAE

ROADS CORPORATION REF. JBN26376


SP21794B PS1

VERSION

DATE /8 /// /09 DATE 15/10/09

COUNCIL DELEGATE SIGNATURE

Original sheet size A3

PLAN OF SUBDIVISION

Under Section 35 of the Subdivision Act 1988

STAGE NO.

Plan Number

PS630818G

VESTING DATES & TRANSFER REGISTRATION DATES OF ACQUIRED LAND

Land affected	L	and acquired by co	mpulsory proce	ss	Land acquired by agreement		Assistant Registar of Titles
	Vesting	Government Gazette		Date of recording	Date of registration	LR reference	
	date	Page	Year	of vesting	of transfer		Signature
ESERVE No. 1	25TH JUNE	1609	2009				
RESERVE No. 2	25TH JUNE	1609 - 1610	2009				
RESERVE No. 3	25TH JUNE	1610	2009				
RESERVE No. 4	25TH JUNE	1609 - 1610	2009				
ļ							

ROADS CORPORATION

Beveridge Williams

development & environment consultants

Melbourne ph: 03 9528 4444 www.beveridgewilliams.com.au

LICENSED SURVEYOR LACHLAN FINLAY MACRAE (PRINT)

DATE 15/ 10/09

ROADS CORPORATION REF. JBN26376 SP21794B PS1

VERSION

DATE 18/11/09

COUNCIL DELEGATE SIGNATURE

Original sheet size A3

Cyright State of Victoria. No part of this publication may be reproduced except as permitted by the Copyright Act 1968 (Cth), to comply with a statutory requirement or pursuant to a written agreement. The information is only valid at the time and in the form obtained from the LANDATA REGD TM System. None of the State of Victoria, its agents or contractors, accepts responsibility for any subsequent publication or reproduction of the information.

The Victorian Government acknowledges the Traditional Owners of Victoria and pays respects to their ongoing connection to their Country, History and Culture. The Victorian Government extends this respect to their Elders,

REGISTER SEARCH STATEMENT (Title Search) Transfer of Land Act 1958

Page 1 of 2

VOLUME 10580 FOLIO 162

Security no : 124092145600S Produced 30/08/2021 03:30 PM

LAND DESCRIPTION

Lot 2 on Plan of Subdivision 630818G.

PARENT TITLES :

Volume 00452 Folio 353 Volume 08916 Folio 320 Volume 09358 Folio 881

Volume 10067 Folio 551

Created by instrument PS423865C 01/05/2001

REGISTERED PROPRIETOR

Estate Fee Simple Joint Proprietors

GEOFFREY FRANCIS SHEA

SUSAN PATRICIA SHEA both of HOPETOUN PARK ROAD BACCHUS MARSH 3340

X399975Q 04/04/2001

ENCUMBRANCES, CAVEATS AND NOTICES

CAVEAT AN989152X 29/06/2017

Caveator

NBN CO LTD ACN: 136533741

Grounds of Claim

LEASE WITH THE FOLLOWING PARTIES AND DATE.

Parties

THE REGISTERED PROPRIETOR(S)

Date

21/06/2017

Estate or Interest

LEASEHOLD ESTATE

Prohibition

ANY INSTRUMENT THAT AFFECTS MY/OUR INTEREST

Lodged by

CLAYTON UTZ

Notices to

CLAYTON UTZ of LEVEL 18 333 COLLINS STREET MELBOURNE VIC 3000

CAVEAT AQ646066E 18/01/2018

Caveator

SURI FAMILY INVESTMENTS PTY LTD ACN: 623142334

Grounds of Claim

PURCHASERS' CONTRACT WITH THE FOLLOWING PARTIES AND DATE.

Parties

THE REGISTERED PROPRIETOR(S)

Date

18/12/2017

Estate or Interest

FREEHOLD ESTATE

Prohibition

ABSOLUTELY

Lodged by

DOUROS JACKSON LAWYERS

Notices to

PETER DOUROS of LEVEL 10 356 COLLINS STREET MELBOURNE VIC 3000

Any encumbrances created by Section 98 Transfer of Land Act 1958 or Section 24 Subdivision Act 1988 and any other encumbrances shown or entered on the plan set out under DIAGRAM LOCATION below.

Title 10580/162 Page 1 of 2

State State Copyright State of Victoria. No part of this publication may be reproduced except as permitted by the Copyright Act 1968 (Cth), to comply with a statutory requirement or pursuant to a written agreement. The information is only valid at the time and in the form obtained from the LANDATA REGD TM System. None of the State of Victoria, its agents or contractors, accepts responsibility for any subsequent publication or reproduction of the information.

The Victorian Government acknowledges the Traditional Owners of Victoria and pays respects to their ongoing connection to their Country, History and Culture. The Victorian Government extends this respect to their Elders, past, present and emerging.

REGISTER SEARCH STATEMENT (Title Search) Transfer of Land Act 1958

Page 2 of 2

DIAGRAM LOCATION

SEE PS630818G FOR FURTHER DETAILS AND BOUNDARIES

ACTIVITY IN THE LAST 125 DAYS

NIL
-----END OF REGISTER SEARCH STATEMENT----Additional information: (not part of the Register Search Statement)
Street Address: 30 KYLE LANE HOPETOUN PARK VIC 3340

DOCUMENT END

Title 10580/162 Page 2 of 2

Imaged Document Cover Sheet

The document following this cover sheet is an imaged document supplied by LANDATA®, Victorian Land Registry Services.

Document Type	Plan
Document Identification	PS630818G
Number of Pages	3
(excluding this cover sheet)	
Document Assembled	30/08/2021 15:32

Copyright and disclaimer notice:

© State of Victoria. This publication is copyright. No part may be reproduced by any process except in accordance with the provisions of the Copyright Act 1968 (Cth) and for the purposes of Section 32 of the Sale of Land Act 1962 or pursuant to a written agreement. The information is only valid at the time and in the form obtained from the LANDATA® System. None of the State of Victoria, LANDATA®, Victorian Land Registry Services Pty. Ltd. ABN 86 627 986 396 as trustee for the Victorian Land Registry Services Trust ABN 83 206 746 897 accept responsibility for any subsequent release, publication or reproduction of the information.

The document is invalid if this cover sheet is removed or altered.

PLAN OF SUBDIVISION

Under Section 35 of the Subdivision Act 1988

STAGE NO. LRS use only

EDITION

1

PS630818G

Location of Land

Parish: MERRIMU

Township: Section: 7

Crown Allotment: 1(PART), 4A & 4B

Crown Portion:

Title Reference: VOL.10580 FOL.161, VOL.10580 FOL.162

VOL.10580 FOL.163

Last Plan Reference: LOTS 1, 2 & 3 PS423865C

Postal Address: HOPETOUN PARK ROAD, (at time of subdivision) HOPETOUN PARK 3340

30 KYLE LANE, HOPETOUN PARK 3340

97 EXFORD WEIR ROAD, HOPETOUN PARK 3340

MGA94 Co-ordinates (of approx. centre of plan)

280 400 N 5 825 900

ZONE: 55

Vesting of Roads and / or Reserves

Roads and reserves vest in the council/body/person named when the appropriate vesting date is recorded or transfer registered. Only road and reserves marked thus (%) vest upon registration of this plan.

ldentifier	Council/Body/Person
RESERVE No.1	ROADS CORPORATION
RESERVE No.2	ROADS CORPORATION
RESERVE No.3	ROADS CORPORATION
RESERVE No.4	ROADS CORPORATION

Council Certification and Endorsement

Council Name: MOORABOOL SHIRE COUNCIL

Ref: 2009-258

- A. This is a plan under section 35 of the Subdivision Act 1988 which does not create any additional lots.
- B. This plan is exempt from Part 3 of the Subdivision Act 1988.
- C. This is a plan under section 35 of the Subdivision-Act-1988 which-creates (an) additional lat(s).
- D. It is certified under section 6 of the Subdivision Act 1988.
- E. It is certified under section 11(7) of the Subdivision Act 1988.
- F. Date-of-original certification under section 6.
- G. This is a statement of compliance under section 21 of the Subdivision Act 1988.

Council Delegate

Date 18 111 , 09 Set & M

Re certified under section-11(7) of the Subdivision Act 1988

Founcil Delegate. Council Seal

Notations

This is/is not a staged subdivision. Staging Planning Permit No: NOT APPLICABLE

Depth Limitation DOES NOT APPLY

Underlined dimensions shown thus 123.45 are not the result of this survey.

Area of Lot 1 & 2(PT) is deduced from title.

All the land is to be acquired free from all encumbrances other than any easements specified on this plan.

Land to be acquired by compulsory process: RESERVE No.1, RESERVÉ No.2, RESERVE No.3 & RESERVE No.4

Land to be acquired by agreement: NIL

The land being subdivided is enclosed within thick continuous lines.

Survey: This plan is based on survey and is compiled from Roads Corporation SP21794B.

This plan has been connected to permanent marks no(s) 56, 85, 86, 110, 691 & 119. In proclaimed Survey Area no. -

Easement Information

E - Encumbering Easement or Condition in Crown Grant in the Nature of an Easement A - Appurtenant Easement R - Encumbering Easement (Road) Legend:

Easements marked (—) are existing easements.
Easements marked (+) are created upon registration of this plan.
Easements marked (*) are created when the appropriate vesting date is recorded or transfer registered.
Easements marked (#) are removed when the appropriate vesting date is recorded or transfer registered. Width

Symbol	Land	Purpose	(Metres)	Origin	Land Benefited/In Favour Of
-	E-1	POWER LINE	15	LP129899	LOTS ON LP129899
!					

LRS use only

Statement of Compliance/ **Exemption Statement**

Received 😿

1/02/10 Date

LRS use only

PLAN REGISTERED

Time 4.06 PM

Date 16/02/2010

RHills

Assistant Registrar of Titles

1, of 3 Sheets

ROADS CORPORATION

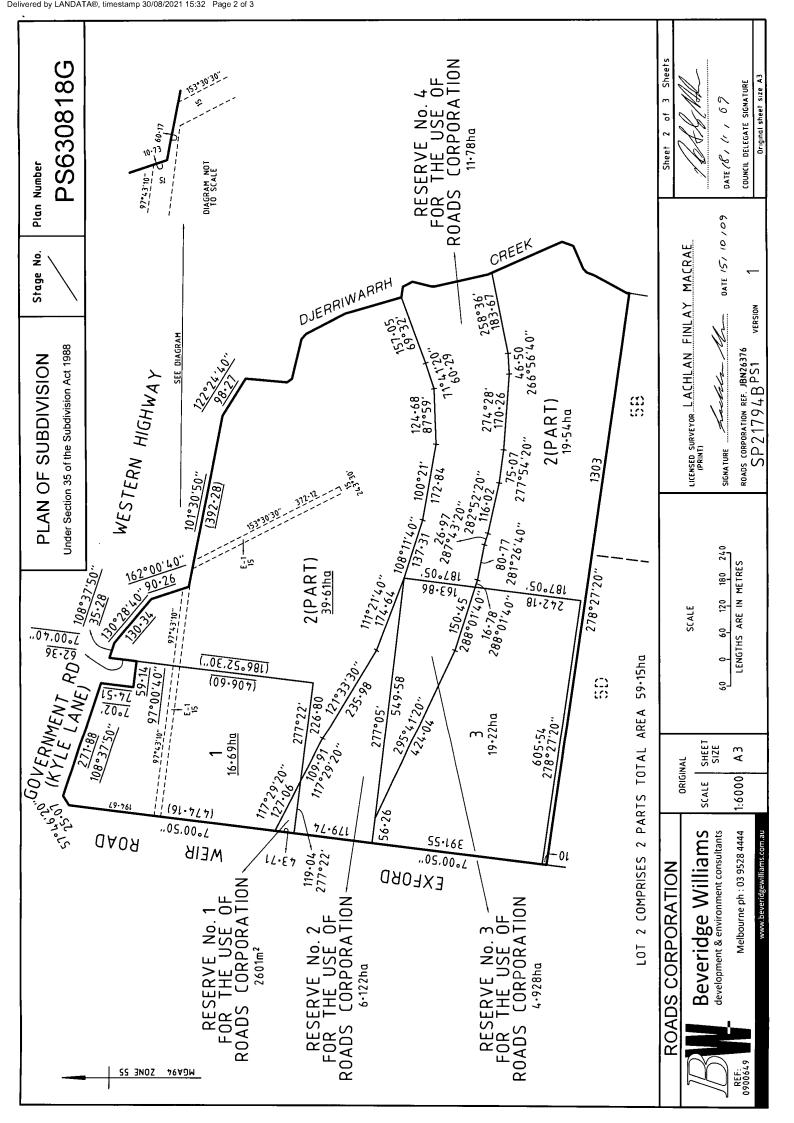
Subject

Beveridge Williams development & environment consultants

Melbourne ph: 03 9528 4444

www.beveridgewilliams.com.au

LICENSED SURVEYOR LACHLAN FINLAY MACRAE


ROADS CORPORATION REF. JBN26376 SP21794B PS1 VERSION

DATE 15/10/09

DATE /8 /// /09

COUNCIL DELEGATE SIGNATURE

Original sheet size A3

PLAN OF SUBDIVISION

Under Section 35 of the Subdivision Act 1988

STAGE NO.

Plan Number

PS630818G

VESTING DATES & TRANSFER REGISTRATION DATES OF ACQUIRED LAND

Land affected	L	and acquired by co	mpulsory proce	ss	Land acquired by agreement		Assistant Registar of Titles
	Vesting	Government Gazette		Date of recording	Date of registration	LR reference	
	date	Page	Year	of vesting	of transfer		Signature
ESERVE No. 1	25TH JUNE	1609	2009				
RESERVE No. 2	25TH JUNE	1609 - 1610	2009				
RESERVE No. 3	25TH JUNE	1610	2009				
RESERVE No. 4	25TH JUNE	1609 - 1610	2009				
ļ							

ROADS CORPORATION

Beveridge Williams

development & environment consultants

Melbourne ph: 03 9528 4444

www.beveridgewilliams.com.au

LICENSED SURVEYOR LACHLAN FINLAY MACRAE (PRINT)

ROADS CORPORATION REF. JBN26376 SP21794B PS1

VERSION

DATE 15/ 10/09

DATE 18/11/09

COUNCIL DELEGATE SIGNATURE

Original sheet size A3

Department of Environment, Land, Water & Planning

Electronic Instrument Statement

Copyright State of Victoria. No part of this publication may be reproduced except as permitted by the Copyright Act 1968 (Cth), to comply with a statutory requirement or pursuant to a written agreement. The information is only valid at the time and in the form obtained from the LANDATA REGD TM System. None of the State of Victoria, its agents or contractors, accepts responsibility for any subsequent publication or reproduction of the information.

The Victorian Government acknowledges the Traditional Owners of Victoria and pays respects to their ongoing connection to their Country, History and Culture. The Victorian Government extends this respect to their Elders, past, present and emerging.

Produced 30/08/2021 03:32:21 PM

Status Registered Dealing Number AQ646066E

Date and Time Lodged 18/01/2018 11:09:06 AM

Lodger Details

Lodger Code 17289A

Name DOUROS JACKSON LAWYERS

Address Lodger Box Phone Email

Reference

942S

CAVEAT

Jurisdiction VICTORIA

Privacy Collection Statement

The information in this form is collected under statutory authority and used for the purpose of maintaining publicly searchable registers and indexes.

Land Title Reference

10580/162

Caveator

Name SURI FAMILY INVESTMENTS PTY LTD

ACN 623142334

Grounds of claim

Purchasers' contract with the following Parties and Date.

Parties

The Registered Proprietor(s)

Date

18/12/2017

Estate or Interest claimed

Freehold Estate

Prohibition

Absolutely

AQ646066E Page 1 of 2

Department of Environment, Land, Water & Planning

Electronic Instrument Statement

Name and Address for Service of Notice

Peter Douros Address

Floor Type LEVEL
Floor Number 10
Street Number 356
Street Name COLLINS
Street Type STREET
Locality MELBOURNE

State VIC Postcode 3000

The caveator claims the estate or interest specified in the land described on the grounds set out. This caveat forbids the registration of any instrument affecting the estate or interest to the extent specified.

Execution

- 1. The Certifier has taken reasonable steps to ensure that this Registry Instrument or Document is correct and compliant with relevant legislation and any Prescribed Requirement.
- 2. The Certifier has retained the evidence supporting this Registry Instrument or Document.
- 3. The Certifier has taken reasonable steps to verify the identity of the caveator.

Executed on behalf of SURI FAMILY INVESTMENTS PTY LTD

Signer Name MARISA BUTERA

Signer Organisation DOUROS JACKSON LAWYERS

Signer Role LAW PRACTICE Execution Date 18 JANUARY 2018

File Notes:

NIL

This is a representation of the digitally signed Electronic Instrument or Document certified by Land Use Victoria.

Statement End.

Department of Environment, Land, Water & Planning

Electronic Instrument Statement

Copyright State of Victoria. No part of this publication may be reproduced except as permitted by the Copyright Act 1968 (Cth), to comply with a statutory requirement or pursuant to a written agreement. The information is only valid at the time and in the form obtained from the LANDATA REGD TM System. None of the State of Victoria, its agents or contractors, accepts responsibility for any subsequent publication or reproduction of the information.

The Victorian Government acknowledges the Traditional Owners of Victoria and pays respects to their ongoing connection to their Country, History and Culture. The Victorian Government extends this respect to their Elders, past, present and emerging.

Produced: 30/08/2021 03:32:21 PM

Status: Registered

Date and Time Lodged: 29/06/2017 08:24:00 AM

Responsible Subscriber: CLAYTON UTZ

Customer Code: 19278U Reference: smh/an/80183991

CAVEAT

Privacy Collection Statement

The information in this form is collected under statutory authority and used for the purpose of maintaining publicly searchable registers and indexes.

The caveator claims the estate or interest specified in the land described on the grounds set out. This caveat forbids the registration of any instrument affecting the estate or interest to the extent specified.

Land:

Volume 10580 Folio 162

Caveator:

NBN CO LTD ACN: 136533741

Grounds of claim:

Lease with the following Parties and Date. Parties
The Registered Proprietor(s)
Date
21/06/2017

Estate or Interest claimed:

Dealing Number: AN989152X

Department of Environment, Land, Water & **Planning**

Electronic Instrument Statement

Leasehold Estate

Prohibition:

Any instrument that affects my/our interest

Name and Address for service of notice:

Clayton Utz of Level 18 333 Collins Street Melbourne VIC 3000

Subscriber Certifications:

1. The Certifier has taken reasonable steps to ensure that this Registry Instrument or Document is correct and compliant with relevant legislation and any Prescribed Requirement.

2. The Certifier has retained the evidence supporting this Registry Instrument or Document.

3. The Certifier has taken reasonable steps to verify the identity of the caveator.

Signed by: Alison Kennedy (for CLAYTON UTZ) on behalf of NBN CO LTD

Dated: 28 June 2017

File Notes:

NIL

This is a representation of the digitally signed Electronic Instrument or Document certified by Land Use Victoria.

Statement End.

The Victorian Government acknowledges the Traditional Owners of Victoria and pays respects to their ongoing connection to their Country, History and Culture. The Victorian Government extends this respect to their Elders,

REGISTER SEARCH STATEMENT (Title Search) Transfer of Land Act 1958

Page 1 of 1

VOLUME 09614 FOLIO 907

Security no : 124092146350B Produced 30/08/2021 03:42 PM

LAND DESCRIPTION

Lot 1 on Plan of Subdivision 145516.

PARENT TITLES :

Volume 01679 Folio 706 Volume 02685 Folio 916 Volume 03139 Folio 770

Volume 03986 Folio 040

Created by instrument LP145516 14/06/1985

REGISTERED PROPRIETOR

Estate Fee Simple
Joint Proprietors
ROSE MIFSUD
ORESTE MIFSUD both of 189 HOPETOUN PARK ROAD HOPETOUN PARK VIC 3340
AS128309C 01/05/2019

ENCUMBRANCES, CAVEATS AND NOTICES

Any encumbrances created by Section 98 Transfer of Land Act 1958 or Section 24 Subdivision Act 1988 and any other encumbrances shown or entered on the plan or imaged folio set out under DIAGRAM LOCATION below.

DIAGRAM LOCATION

SEE LP145516 FOR FURTHER DETAILS AND BOUNDARIES

ACTIVITY IN THE LAST 125 DAYS

NIL

-----END OF REGISTER SEARCH STATEMENT------

Additional information: (not part of the Register Search Statement)

Street Address: 189 HOPETOUN PARK ROAD HOPETOUN PARK VIC 3340

DOCUMENT END

Title 9614/907 Page 1 of 1

The document following this cover sheet is an imaged document supplied by LANDATA®, Victorian Land Registry Services.

Document Type	Plan
Document Identification	LP145516
Number of Pages	1
(excluding this cover sheet)	
Document Assembled	30/08/2021 15:43

Copyright and disclaimer notice:

© State of Victoria. This publication is copyright. No part may be reproduced by any process except in accordance with the provisions of the Copyright Act 1968 (Cth) and for the purposes of Section 32 of the Sale of Land Act 1962 or pursuant to a written agreement. The information is only valid at the time and in the form obtained from the LANDATA® System. None of the State of Victoria, LANDATA®, Victorian Land Registry Services Pty. Ltd. ABN 86 627 986 396 as trustee for the Victorian Land Registry Services Trust ABN 83 206 746 897 accept responsibility for any subsequent release, publication or reproduction of the information.

5°

280

280

GOVT

269' 30' 40' &

ROAD

LP145516T EDITION 1 APPROVED 14 16 185

401.61

			APPROVED 4 / 6 / 85
PLAN OF SUBDIVISION OF:	,	APPROPRIATIONS	ENCUMBRANCES & OTHER NOTATIONS
ROWN ALLOTS 5 ^A , 5 ^B , 5 ^C & 5 ^D SECTION 7			DEPTH LIMITATION: 15·24m (CA 5B, 5C & 5D)
PARISH: OF MERRIMU COUNTY: OF BOURKE			
APPROVED 1 4 JUN 1985	V. 1679 V. 2685 V. 3139 V. 3986	F. 706 F. 916 F. 770 F. 040	
LITRO SH.			
O & 4-A		4 <u>.</u> 8	. !
91° 25° > 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	11·44ha 2	(1293·3) 11·4 1/-4 1/-4 1/-4 1/-4 1/-4 1/-4 1/-4 1/-4	380 203.3 58 15 na 10 11 29 na 10 15 14

280

(1241.61)

The Victorian Government acknowledges the Traditional Owners of Victoria and pays respects to their ongoing connection to their Country, History and Culture. The Victorian Government extends this respect to their Elders,

REGISTER SEARCH STATEMENT (Title Search) Transfer of Land Act 1958

Page 1 of 2

VOLUME 09614 FOLIO 908

Security no : 124092153713Y Produced 30/08/2021 05:59 PM

LAND DESCRIPTION

Lot 2 on Plan of Subdivision 145516.

PARENT TITLES :

Volume 01679 Folio 706 Volume 02685 Folio 916 Volume 03139 Folio 770

Volume 03986 Folio 040

Created by instrument LP145516 14/06/1985

REGISTERED PROPRIETOR

Estate Fee Simple Joint Proprietors DENIS JOHN GRIEVE WENDY JANE GRIEVE both of HOPETOUN PARK RD BACCHUS MARSH 3340 X221051A 19/12/2000

ENCUMBRANCES, CAVEATS AND NOTICES

MORTGAGE X221052W 19/12/2000 COMMONWEALTH BANK OF AUSTRALIA

CAVEAT AQ898423X 06/04/2018

Caveator

WERIBEE WATERS PTY LTD ACN: 623788689

Grounds of Claim

PURCHASERS' CONTRACT WITH THE FOLLOWING PARTIES AND DATE.

Parties

THE REGISTERED PROPRIETOR(S)

Date

18/01/2018

Estate or Interest

FREEHOLD ESTATE

Prohibition

ABSOLUTELY

Lodged by

WYNDHAM PARTNERS

Notices to

DOMINIC BARTALOTTA of UNIT 2 36 SYNNOT STREET WERRIBEE VIC 3030

Any encumbrances created by Section 98 Transfer of Land Act 1958 or Section 24 Subdivision Act 1988 and any other encumbrances shown or entered on the plan or imaged folio set out under DIAGRAM LOCATION below.

DIAGRAM LOCATION

SEE LP145516 FOR FURTHER DETAILS AND BOUNDARIES

ACTIVITY IN THE LAST 125 DAYS

NTT.

------ STATEMENT-----END OF REGISTER SEARCH STATEMENT------

Additional information: (not part of the Register Search Statement)

Title 9614/908 Page 1 of 2

The Victorian Government acknowledges the Traditional Owners of Victoria and pays respects to their ongoing connection to their Country, History and Culture. The Victorian Government extends this respect to their Elders, past, present and emerging.

REGISTER SEARCH STATEMENT (Title Search) Transfer of Land Act 1958

Page 2 of 2

Street Address: 219 HOPETOUN PARK ROAD HOPETOUN PARK VIC 3340

ADMINISTRATIVE NOTICES

AQ378020X NOMINATION TO PAPER INST. 24/10/2017 eCT Nominated to Discharge of Mortgage TO COMMONWEALTH BANK

eCT Control 15940N CBA - COMMONWEALTH BANK OF AUSTRALIA Effective from 23/10/2016

DOCUMENT END

Title 9614/908 Page 2 of 2

The document following this cover sheet is an imaged document supplied by LANDATA®, Victorian Land Registry Services.

Document Type	Plan
Document Identification	LP145516
Number of Pages	1
(excluding this cover sheet)	
Document Assembled	30/08/2021 18:00

Copyright and disclaimer notice:

© State of Victoria. This publication is copyright. No part may be reproduced by any process except in accordance with the provisions of the Copyright Act 1968 (Cth) and for the purposes of Section 32 of the Sale of Land Act 1962 or pursuant to a written agreement. The information is only valid at the time and in the form obtained from the LANDATA® System. None of the State of Victoria, LANDATA®, Victorian Land Registry Services Pty. Ltd. ABN 86 627 986 396 as trustee for the Victorian Land Registry Services Trust ABN 83 206 746 897 accept responsibility for any subsequent release, publication or reproduction of the information.

LP145516T EDITION 1

	APPROVED 14 16 185
APPROPRIATIONS	ENCUMBRANCES & OTHER NOTATIONS
•	DEPTH LIMITATION: 15·24m (CA 5B, 5C & 5D)
F. 706 F. 916 F. 770 F. 040	
4 ^B	
(1293·3) (11·45	10 10 10 10 10 10 10 10 10 10 10 10 10 1
280	401 61
	280 * (1241·61)

GOVT

ROAD

The Victorian Government acknowledges the Traditional Owners of Victoria and pays respects to their ongoing connection to their Country, History and Culture. The Victorian Government extends this respect to their Elders, past present and emerging.

REGISTER SEARCH STATEMENT (Title Search) Transfer of Land Act 1958

Page 1 of 1

VOLUME 09614 FOLIO 909

Security no : 124092153853W Produced 30/08/2021 06:09 PM

LAND DESCRIPTION

Lot 3 on Plan of Subdivision 145516.

PARENT TITLES :

Volume 01679 Folio 706 Volume 02685 Folio 916 Volume 03139 Folio 770

Volume 03986 Folio 040

Created by instrument LP145516 14/06/1985

REGISTERED PROPRIETOR

Estate Fee Simple Sole Proprietor

ANNA & ZHAO INVESTMENT PTY LTD of 24 FREDERICK STREET BALWYN VIC 3104 AR071529J 29/05/2018

ENCUMBRANCES, CAVEATS AND NOTICES

Any encumbrances created by Section 98 Transfer of Land Act 1958 or Section 24 Subdivision Act 1988 and any other encumbrances shown or entered on the plan or imaged folio set out under DIAGRAM LOCATION below.

DIAGRAM LOCATION

SEE LP145516 FOR FURTHER DETAILS AND BOUNDARIES

ACTIVITY IN THE LAST 125 DAYS

NUMBER		STATUS	DATE
AU352257A (E)	DISCHARGE OF MORTGAGE	Registered	18/05/2021
AU372830H (E)	TRANSFER CONTROL OF ECT	Completed	24/05/2021

-----END OF REGISTER SEARCH STATEMENT------

Additional information: (not part of the Register Search Statement)

Street Address: 249 HOPETOUN PARK ROAD HOPETOUN PARK VIC 3340

ADMINISTRATIVE NOTICES

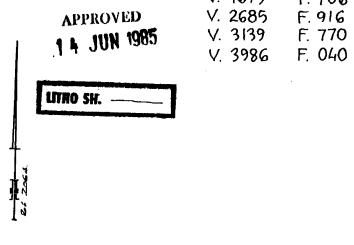
NIL

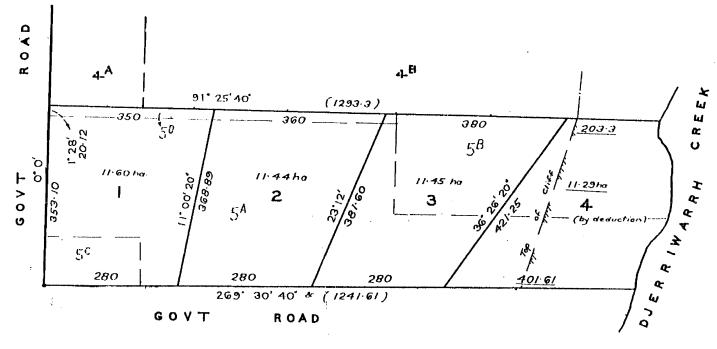
eCT Control 22887Y JURIS NEXUS Effective from 24/05/2021

DOCUMENT END

Title 9614/909 Page 1 of 1

The document following this cover sheet is an imaged document supplied by LANDATA®, Victorian Land Registry Services.


Document Type	Plan
Document Identification	LP145516
Number of Pages	1
(excluding this cover sheet)	
Document Assembled	30/08/2021 18:11


Copyright and disclaimer notice:

© State of Victoria. This publication is copyright. No part may be reproduced by any process except in accordance with the provisions of the Copyright Act 1968 (Cth) and for the purposes of Section 32 of the Sale of Land Act 1962 or pursuant to a written agreement. The information is only valid at the time and in the form obtained from the LANDATA® System. None of the State of Victoria, LANDATA®, Victorian Land Registry Services Pty. Ltd. ABN 86 627 986 396 as trustee for the Victorian Land Registry Services Trust ABN 83 206 746 897 accept responsibility for any subsequent release, publication or reproduction of the information.

LP145516T EDITION 1 APPROVED 14 16 185

PLAN OF SUBDIVISION OF:		APPROPRIATIONS	ENCUMBRANCES & OTHER NOTATIONS
CROWN ALLOTS 54,58,5°&5°			DEPTH LIMITATION: 15·24m (CA 5B, 5C & 5D)
SECTION 7	ļ		
PARISH: OF MERRIMU		•	
COUNTY: OF BOURKE			
LENGTHS ARE IN METRES			.
APPROVED	V. 1679 V. 2685 V. 3139	F. 706 F. 916 F. 770	

The Victorian Government acknowledges the Traditional Owners of Victoria and pays respects to their ongoing connection to their Country, History and Culture. The Victorian Government extends this respect to their Elders,

REGISTER SEARCH STATEMENT (Title Search) Transfer of Land Act 1958

Page 1 of 1

VOLUME 09614 FOLIO 910

Security no : 124092153894B Produced 30/08/2021 06:15 PM

LAND DESCRIPTION

Lot 4 on Plan of Subdivision 145516.

PARENT TITLES :

Volume 01679 Folio 706 Volume 02685 Folio 916 Volume 03139 Folio 770

Volume 03986 Folio 040

Created by instrument LP145516 14/06/1985

REGISTERED PROPRIETOR

Estate Fee Simple Sole Proprietor

AUSTRALIA INFINITY INVESTMENT PTY LTD of 12 EDINBURGH STREET BOX HILL SOUTH

VIC 3128

AS623974D 16/10/2019

ENCUMBRANCES, CAVEATS AND NOTICES

Any encumbrances created by Section 98 Transfer of Land Act 1958 or Section 24 Subdivision Act 1988 and any other encumbrances shown or entered on the plan or imaged folio set out under DIAGRAM LOCATION below.

DIAGRAM LOCATION

SEE LP145516 FOR FURTHER DETAILS AND BOUNDARIES

ACTIVITY IN THE LAST 125 DAYS

NIL

-----END OF REGISTER SEARCH STATEMENT------

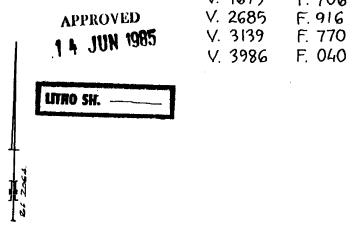
Additional information: (not part of the Register Search Statement)

Street Address: 259 HOPETOUN PARK ROAD HOPETOUN PARK VIC 3340

DOCUMENT END

Title 9614/910 Page 1 of 1

The document following this cover sheet is an imaged document supplied by LANDATA®, Victorian Land Registry Services.


Document Type	Plan
Document Identification	LP145516
Number of Pages	1
(excluding this cover sheet)	
Document Assembled	30/08/2021 18:18


Copyright and disclaimer notice:

© State of Victoria. This publication is copyright. No part may be reproduced by any process except in accordance with the provisions of the Copyright Act 1968 (Cth) and for the purposes of Section 32 of the Sale of Land Act 1962 or pursuant to a written agreement. The information is only valid at the time and in the form obtained from the LANDATA® System. None of the State of Victoria, LANDATA®, Victorian Land Registry Services Pty. Ltd. ABN 86 627 986 396 as trustee for the Victorian Land Registry Services Trust ABN 83 206 746 897 accept responsibility for any subsequent release, publication or reproduction of the information.

LP145516T EDITION 1 APPROVED 14, 16, 185

PLAN OF SUBDIVISION OF:	APPRO	OPRIATIONS	ENCUMBRANCES & OTHER NOTATIONS
CROWN ALLOTS 5A, 5B,5C&5D			DEPTH LIMITATION: 15·24m (CA 5B, 5C & 5D)
SECTION 7			
PARISH: OF MERRIMU			
COUNTY: OF BOURKE			
LENGTHS ARE IN METRES			· I
		. 706 . 916	· · · · · · · · · · · · · · · · · · ·

The Victorian Government acknowledges the Traditional Owners of Victoria and pays respects to their ongoing connection to their Country, History and Culture. The Victorian Government extends this respect to their Elders,

REGISTER SEARCH STATEMENT (Title Search) Transfer of Land Act 1958

Page 1 of 1

VOLUME 07013 FOLIO 484

Security no : 124092154008D Produced 30/08/2021 06:25 PM

CROWN GRANT

LAND DESCRIPTION

Crown Allotment 6A Section 15 Parish of Merrimu.

REGISTERED PROPRIETOR

Estate Fee Simple
Sole Proprietor
DELLIOS BROS. PTY LTD of 209 NICHOLSON ST FOOTSCRAY
M554885U 10/11/1986

ENCUMBRANCES, CAVEATS AND NOTICES

MORTGAGE T767088Q 12/07/1995 NATIONAL AUSTRALIA BANK LTD

Any crown grant reservations exceptions conditions limitations and powers noted on the plan or imaged folio set out under DIAGRAM LOCATION below. For details of any other encumbrances see the plan or imaged folio set out under DIAGRAM LOCATION below.

DIAGRAM LOCATION

SEE TP303309S FOR FURTHER DETAILS AND BOUNDARIES

ACTIVITY IN THE LAST 125 DAYS

NIL

-----END OF REGISTER SEARCH STATEMENT-----END OF REGISTER SEARCH STATEMENT-----

Additional information: (not part of the Register Search Statement)

Street Address: COWANS ROAD HOPETOUN PARK VIC 3340

ADMINISTRATIVE NOTICES

NIL

eCT Control 16089P NATIONAL AUSTRALIA BANK LIMITED Effective from 22/10/2016

DOCUMENT END

Title 7013/484 Page 1 of 1

The document following this cover sheet is an imaged document supplied by LANDATA®, Victorian Land Registry Services.

Document Type	Plan
Document Identification	TP303309S
Number of Pages	3
(excluding this cover sheet)	
Document Assembled	30/08/2021 18:27

Copyright and disclaimer notice:

© State of Victoria. This publication is copyright. No part may be reproduced by any process except in accordance with the provisions of the Copyright Act 1968 (Cth) and for the purposes of Section 32 of the Sale of Land Act 1962 or pursuant to a written agreement. The information is only valid at the time and in the form obtained from the LANDATA® System. None of the State of Victoria, LANDATA®, Victorian Land Registry Services Pty. Ltd. ABN 86 627 986 396 as trustee for the Victorian Land Registry Services Trust ABN 83 206 746 897 accept responsibility for any subsequent release, publication or reproduction of the information.

TITLE PLAN

EDITION 1

TP 303309S

Location of Land

Parish:

MERRIMU

15

6A

Township:

Section Crown Allotment

Crown Portion:

Last Plan Reference:

Derived From: VOL 7013 FOL 484

Depth Limitation: 50 FEET Notations

SUBJECT TO THE RESERVATIONS EXCEPTIONS CONDITIONS AND POWERS CONTAINED IN CROWN GRANT VOL. 7013 FOL. 484 AND NOTED ON SHEET 2 OF THIS PLAN

WATERWAY NOTATION: LAND IN THIS PLAN MAY ABUT CROWN LAND THAT MAY BE SUBJECT TO A CROWN LICENCE TO USE

ANY REFERENCE TO MAP IN THE TEXT MEANS THE DIAGRAM SHOWN ON

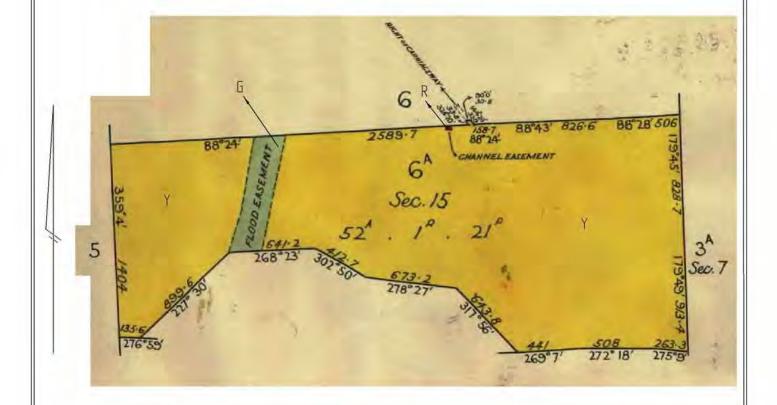
THIS TITLE PLAN

Description of Land / Easement Information

E-1 = SEWERAGE EASEMENT TO WESTERN REGION WATER AUTHORITY CREATED BY C/E U289491S AND GAS SUPPLY PURPOSES EASEMENT TO GASCOR CREATED BY C/E U307643M

THIS PLAN HAS BEEN PREPARED FOR THE LAND REGISTRY, LAND VICTORIA, FOR TITLE DIAGRAM PURPOSES AS PART OF THE LAND TITLES AUTOMATION PROJECT

COMPILED:


03/02/2000

VERIFIED:

C.L.

SEE SHEET 3 FOR FURTHER EASEMENT DETAILS

COLOUR CODE G = GREEN R = RED Y = YELLOW

LENGTHS ARE IN LINKS

Metres = 0.3048 x Feet Metres = 0:201168 x Links

Sheet 1 of 3 sheets

TITLE PLAN

TP 303309S

LAND DESCRIPTION INCLUDING RESERVATIONS EXCEPTIONS CONDITIONS AND POWERS SHOWN ON THE CROWN GRANT

HII THAT FIRCE OF LAND in the said State containing

fifty-two acres one rood and twenty-one perches more or less being Allotment sixA of Section fifteen in the

Parish of Merriau County of Bourke _______ Together with the Right of Carriage-way created by Instrument No. 1876702 in the Register Book of the Office of Titles and abuttals thereof in the map drawn in the margin of these presents and therein colored yellow and green _______ Thoy with the measurements and abuttals thereof in the map drawn in the margin of these presents and therein colored yellow and red Thoy with the measurements and abuttals thereof in the map drawn in the margin of these presents and therein colored yellow and red Thoy with the measurements and abuttals thereof in the map drawn in the margin of these presents and therein colored yellow and red Thoy with the measurements. the grantee shall be entitled to sink wells for water and to the use and enjoyment of any wells or springs of water upon or within the boundaries of the said land for any and for all purposes as though he held the land without limitation as to depth Excapring nevertheless unto Us Our beits and successors all gold and silver and minerals as defined in the Mines Act 1928 in upon or under or within the boundaries of the land hereby granted Ann reserving to Un Our heirs and successors free liberty and authority for Us Our heirs and successors and Our and their licensees agents and servants at any time or times hereafter to enter upon the said land and to search and mine therein for gold silver and minerals as aforesaid and to extract and remove therefrom any such gold silver and minerals and to search for and work dispose of and carry away the said gold silver and minerals lying in upon or under the land hereby granted and for the purposes aforesaid to sink shafts make drives erect machinery and to carry on any works and do any other things which may be necessary or usual in mining and with all other incidents that are necessary to be used for the getting of the said gold silver and minerals and the working of all mines seams lodes and doposits containing such gold silver and minerals in upon or under the land hereby granted AND ALSO reserving to Us Our heirs and successors-

(i) all petroleum as defined in the Mines (Petroleum) Act 1935 on or below the surface of the said land and

(ii) the right of access for the purpose of searching for and for the operations of obtaining such petroleum in any part or parts of the said land and

(iii) rights of way for access and for pipe-lines and other purposes necessary for obtaining and conveying such petroleum in the event of such petroleum being obtained in any part or parts of the said land

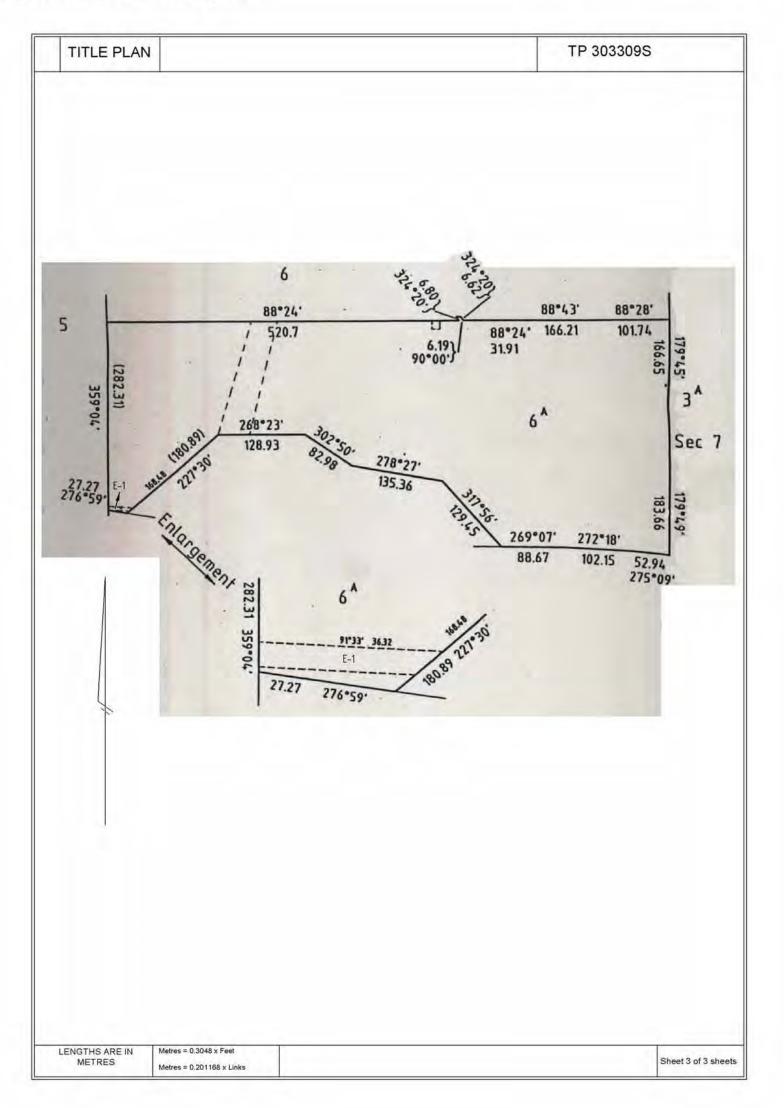
It is a further condition that the State Rivers and Water Supply Commission shall have all that the full and free right and liberty to and for it and its servants agents and soorkmen at all times hereafter to enter in and upon so much of the said land as is approximately shown by red color in the said map and to clear the same of obstructions and to dig out excavats and construct a vater channel and waterworks for the purposes of vater supply and drainage through in and upon the said land colored red in such names and of such width depth and nature as the said Commission may deem advisable and to use such channel and waterworks for all purposes of vater supply and drainage and also to repair and alter the said channel and vaterworks and also to deposit or place and allow to remain on or along the said land colored red or any part thereof all timber earth voil stone gravel or other substance matter or thing which may be removed or executed in clearing the said land colored red or in the making or construction of the said channel and vaterworks or in regaining or altering the same and also to go pass and repairs for all the purposes aforesaid either with or without horses or other animals our other carriages through over and along the land colored red aforesaid.

PROVIDED ALWAYS that the said land is and shall be subject to be resumed for mining purposes under Section 168 of the Land Act 1928.

Ann PROVIDED also that the said land is and shall be subject to the right of any person being the holder of a miner's right or of a mining lease or mineral lease under the Mines Act 1928 or any corresponding previous enactment to enter therein and to mine for gold silver or minerals within the meaning of the said Act and to erect and occupy mining plant or machinery thereon in the same manner and under the same conditions and provisions as those to which such person would for the time being be entitled to mine for gold and silver in and upon Crown lands Province that compensation shall be paid to the said

- GRANTEE

It is an express condition on which this Grant is made that neither the grantee nor any body or person claiming from under or through him shall have or make any claim or demand upon Us or upon Our heirs or


his executors administrators assigns or transferees by such person for surface damage to be done to such land by reason of mining thereon such compensation to be determined as provided for the time being by law and the payment thereof to be a condition precedent to such right of entry.

successors or upon the State Rivers and Water Supply Commission Our their or its tenants officers workmen or servants in respect of or incidental to any seepage or flooding or other damage that may occur or happen or result upon that portion of the land hereby granted shown by green color in the map in the margin hereof.

LENGTHS ARE IN LINKS

Metres = 0.3048 x Feet Metres = 0.201168 x Links

Sheet 2 of 3 sheets

The Victorian Government acknowledges the Traditional Owners of Victoria and pays respects to their ongoing connection to their Country, History and Culture. The Victorian Government extends this respect to their Elders,

REGISTER SEARCH STATEMENT (Title Search) Transfer of Land Act 1958

Page 1 of 1

VOLUME 03623 FOLIO 530

Security no : 124092154006F Produced 30/08/2021 06:25 PM

LAND DESCRIPTION

Lot 1 on Title Plan 749719H (formerly known as part of Crown Allotment 6 Section 15 Parish of Merrimu).

PARENT TITLES:

Volume 01328 Folio 599 Volume 03540 Folio 955

Created by instrument 1524689R 06/06/1912

REGISTERED PROPRIETOR

Estate Fee Simple
TENANTS IN COMMON
As to 1 of a total of 3 equal undivided shares
Sole Proprietor
 NICHOLAS STANLEY DELLIOS of LERDERDERG GORGE RD BACCHUS MARSH 3340
As to 2 of a total of 3 equal undivided shares
Sole Proprietor
 DELLIOS BROS PTY LTD of LEVEL 6/161 COLLINS ST MELBOURNE 3000
 U572431V 30/12/1996

ENCUMBRANCES, CAVEATS AND NOTICES

MORTGAGE U572433P 30/12/1996 NATIONAL AUSTRALIA BANK LTD

Any encumbrances created by Section 98 Transfer of Land Act 1958 or Section 24 Subdivision Act 1988 and any other encumbrances shown or entered on the plan set out under DIAGRAM LOCATION below.

DIAGRAM LOCATION

SEE TP749719H FOR FURTHER DETAILS AND BOUNDARIES

ACTIVITY IN THE LAST 125 DAYS

NIL
-----END OF REGISTER SEARCH STATEMENT----Additional information: (not part of the Register Search Statement)
Street Address: COWANS ROAD HOPETOUN PARK VIC 3340

ADMINISTRATIVE NOTICES

NIL

eCT Control 16089P NATIONAL AUSTRALIA BANK LIMITED Effective from 22/10/2016

DOCUMENT END

Title 3623/530 Page 1 of 1

The document following this cover sheet is an imaged document supplied by LANDATA®, Victorian Land Registry Services.

Document Type	Plan
Document Identification	TP749719H
Number of Pages	2
(excluding this cover sheet)	
Document Assembled	30/08/2021 18:27

Copyright and disclaimer notice:

© State of Victoria. This publication is copyright. No part may be reproduced by any process except in accordance with the provisions of the Copyright Act 1968 (Cth) and for the purposes of Section 32 of the Sale of Land Act 1962 or pursuant to a written agreement. The information is only valid at the time and in the form obtained from the LANDATA® System. None of the State of Victoria, LANDATA®, Victorian Land Registry Services Pty. Ltd. ABN 86 627 986 396 as trustee for the Victorian Land Registry Services Trust ABN 83 206 746 897 accept responsibility for any subsequent release, publication or reproduction of the information.

Delivered by LANDATA®, timestamp 30/08/2021 18:27 Page 1 of 2

TITLE PLAN

EDITION 1

TP 749719H

LOCATION OF LAND

Parish:
Township:

MERRIMU

Section:

15

Crown Allotment:

6 (PT)

Crown Portion:

.

Last Plan Reference :

Derived From:

VOL. 3623 FOL. 530

Depth Limitation:

NIL

Notations

ANY REFERENCE TO MAP IN THE TEXT MEANS THE DIAGRAM SHOWN ON THIS TITLE PLAN

THIS PLAN HAS BEEN PREPARED BY

LAND REGISTRY, LAND VICTORIA FOR

TITLE DIAGRAM PURPOSES
COMPILED: Date:

Date: 8/02/08

VERIFIED:

A. DALLAS

Assistant Registrar of Titles

Description of Land/ Easement Information

ENCUMBRANCES

AS TO THE LAND MARKED E-1

THE EASEMENT TO S.R. & W.S.C. CREATED BY INSTRUMENT 1876702

AS TO THE LAND MARKED E-2

THE EASEMENT TO S.R. & W.S.C. CREATED BY INSTRUMENT 1687711

AS TO THE LAND MARKED E-3 & E-4

THE EASEMENT TO S.R. & W.S.C. CREATED BY INSTRUMENT A394018

AS TO THE LAND MARKED E-4

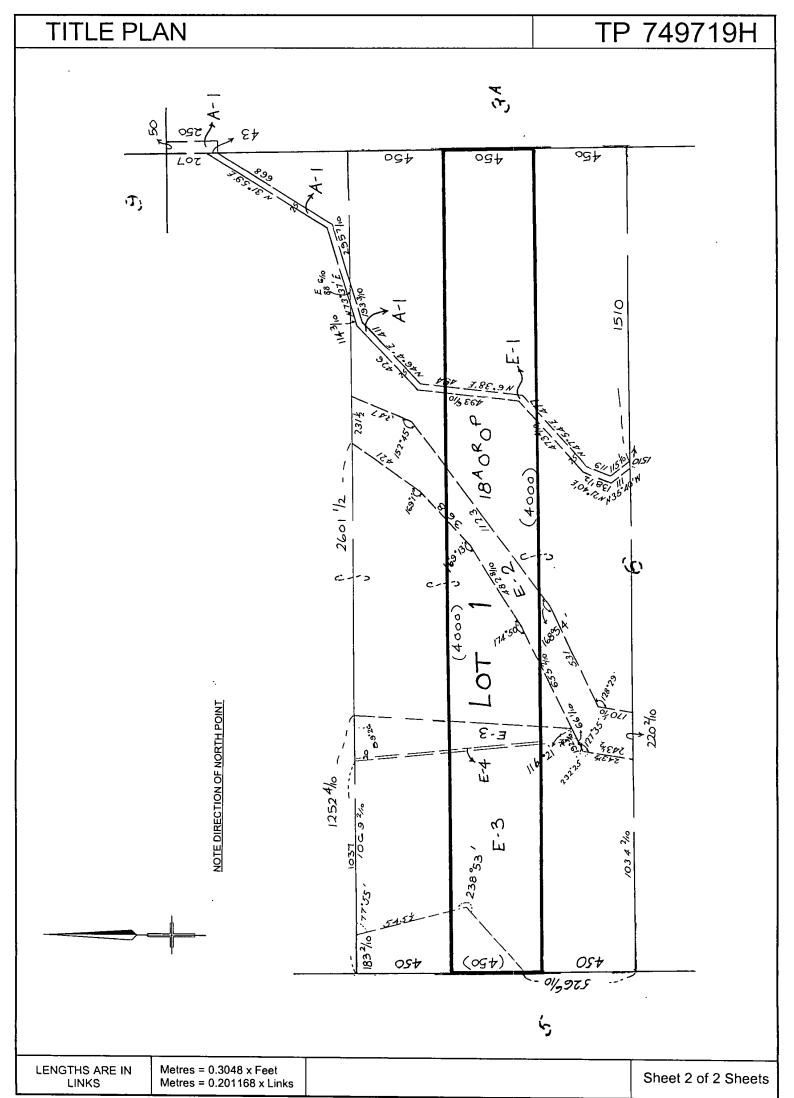
THE EASEMENT CREATED BY INSTRUMENTS E853648 & F89110

APPURTENANCIES

TOGETHER WITH A RIGHT OF CARRIAGEWAY OVER THE ROAD MARKED A-1 ON THE SAID MAP

FOR DIAGRAM SEE SHEET 2

TABLE OF PARCEL IDENTIFIERS


WARNING: Where multiple parcels are referred to or shown on the Title Plan this does not imply separately disposable parcels under Section 8A of the Sale of Land Act 1962

LOT 1 = CROWN ALLOT 6 (PT) SECTION 15

LENGTHS ARE IN LINKS

Metres = 0.3048 x Feet Metres = 0.201168 x Links

Sheet 1 of 2 Sheets

The Victorian Government acknowledges the Traditional Owners of Victoria and pays respects to their ongoing connection to their Country, History and Culture. The Victorian Government extends this respect to their Elders,

REGISTER SEARCH STATEMENT (Title Search) Transfer of Land Act 1958

Page 1 of 1

VOLUME 04072 FOLIO 351

Security no : 124092154007E Produced 30/08/2021 06:25 PM

LAND DESCRIPTION

Lot 1 on Title Plan 414231K (formerly known as part of Crown Allotment 6 Section 15 Parish of Merrimu).

PARENT TITLES:

Volume 01328 Folio 599 Volume 03540 Folio 955

Created by instrument 0829685 04/07/1917

REGISTERED PROPRIETOR

Estate Fee Simple
TENANTS IN COMMON
As to 1 of a total of 3 equal undivided shares
Sole Proprietor
 NICHOLAS STANLEY DELLIOS of LERDERDERG GORGE RD BACCHUS MARSH 3340
As to 2 of a total of 3 equal undivided shares
Sole Proprietor
 DELLIOS BROS PTY LTD of LEVEL 6/161 COLLINS ST MELBOURNE 3000
 U572432S 30/12/1996

ENCUMBRANCES, CAVEATS AND NOTICES

MORTGAGE U572433P 30/12/1996 NATIONAL AUSTRALIA BANK LTD

Any encumbrances created by Section 98 Transfer of Land Act 1958 or Section 24 Subdivision Act 1988 and any other encumbrances shown or entered on the plan set out under DIAGRAM LOCATION below.

DIAGRAM LOCATION

SEE TP414231K FOR FURTHER DETAILS AND BOUNDARIES

ACTIVITY IN THE LAST 125 DAYS

NIL
-----END OF REGISTER SEARCH STATEMENT----Additional information: (not part of the Register Search Statement)
Street Address: COWANS ROAD HOPETOUN PARK VIC 3340

ADMINISTRATIVE NOTICES

NTL

eCT Control 16089P NATIONAL AUSTRALIA BANK LIMITED Effective from 22/10/2016

DOCUMENT END

Title 4072/351 Page 1 of 1

The document following this cover sheet is an imaged document supplied by LANDATA®, Victorian Land Registry Services.

Document Type	Plan
Document Identification	TP414231K
Number of Pages	2
(excluding this cover sheet)	
Document Assembled	30/08/2021 18:27

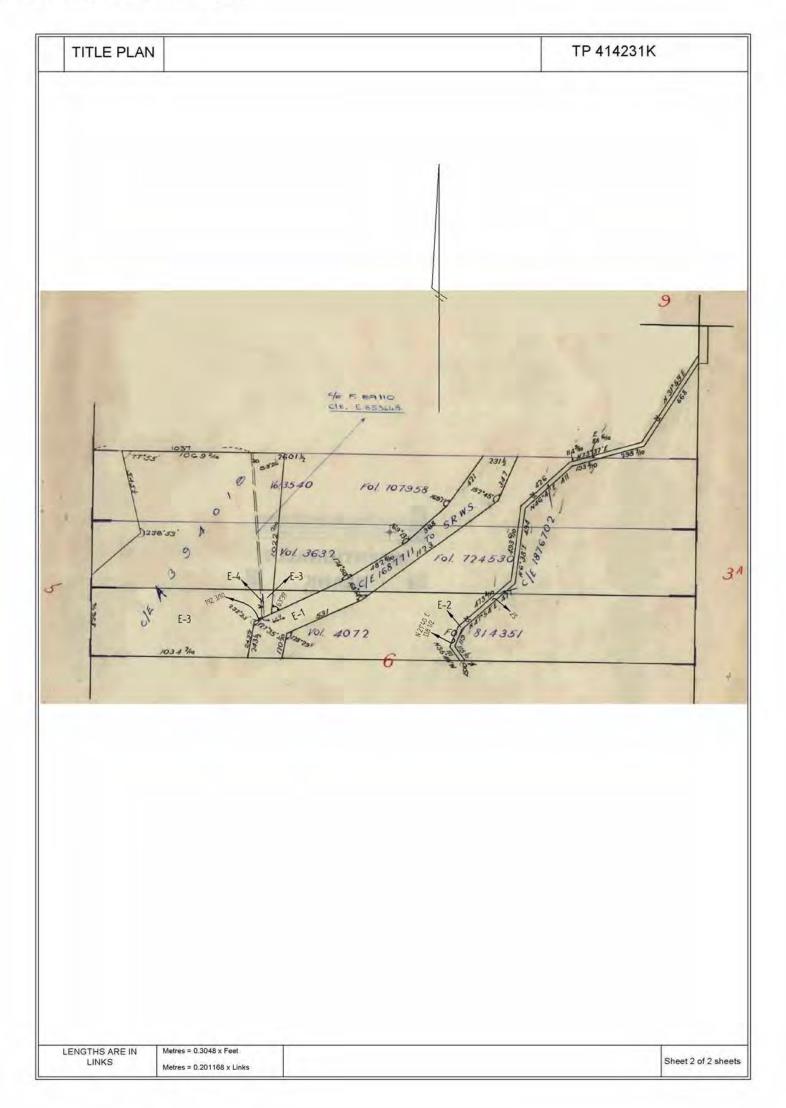
Copyright and disclaimer notice:

© State of Victoria. This publication is copyright. No part may be reproduced by any process except in accordance with the provisions of the Copyright Act 1968 (Cth) and for the purposes of Section 32 of the Sale of Land Act 1962 or pursuant to a written agreement. The information is only valid at the time and in the form obtained from the LANDATA® System. None of the State of Victoria, LANDATA®, Victorian Land Registry Services Pty. Ltd. ABN 86 627 986 396 as trustee for the Victorian Land Registry Services Trust ABN 83 206 746 897 accept responsibility for any subsequent release, publication or reproduction of the information.

EDITION 1 TP 414231K TITLE PLAN **Notations** Location of Land MERRIMU Parish: Township: 15 Section: 6 (PT) Crown Allotment Crown Portion: Last Plan Reference: Derived From: VOL 4072 FOL 351 ANY REFERENCE TO MAP IN THE TEXT MEANS THE DIAGRAM SHOWN ON Depth Limitation: NIL THIS TITLE PLAN Description of Land / Easement Information THIS PLAN HAS BEEN PREPARED piece of Land, delineated and coloured FOR THE LAND REGISTRY, LAND VICTORIA, FOR TITLE DIAGRAM PURPOSES AS PART OF THE LAND on the map in the margin containing Eighteen acres or thereabouts -red TITLES AUTOMATION PROJECT COMPILED: 20-04-2000 being part of Crown Allotment Six Section Fifteen Parish of Merrimu County ---VERIFIED: A.D. Together with a right of carriage way over the roads coloured brown --COLOUR CODE R = RED BR = BROWN E-1 = EASEMENT TO STATE RIVERS & WATER SUPPLY COMMISSION CREATED BY C/E 1687711 E-2 = EASEMENT TO STATE RIVERS & WATER SUPPLY COMMISSION CREATED BY C/E 1876702 E-3 = EASEMENT TO STATE RIVERS & WATER SUPPLY COMMISSION CREATED BY C/E A394018 E-4 = EASEMENT TO STATE RIVERS & WATER SUPPLY COMMISSION CREATED BY C/E A394018 & EASEMENTS CREATED BY C/E E853648 & C/E F89110 SEE SHEET 2 FOR FURTHER EASEMENT DETAILS 18A OR OP 31

TABLE OF PARCEL IDENTIFIERS

WARNING: Where multiple parcels are referred to or shown on this Title Plan this does not imply separately disposable parcels under Section 8A of the Sale of Land Act 1962


PARCEL 1 = CA 6 (PT)

LENGTHS ARE IN LINKS

Metres = 0.3048 x Feet

Metres = 0.201168 x Links

Sheet 1 of 2 sheets

The Victorian Government acknowledges the Traditional Owners of Victoria and pays respects to their ongoing connection to their Country, History and Culture. The Victorian Government extends this respect to their Elders,

REGISTER SEARCH STATEMENT (Title Search) Transfer of Land Act 1958

Page 1 of 1

VOLUME 03540 FOLIO 958

Security no : 124092154005G Produced 30/08/2021 06:25 PM

LAND DESCRIPTION

Lot 1 on Title Plan 681605Y (formerly known as part of Crown Allotment 6 Section 15 Parish of Merrimu).

PARENT TITLES:

Volume 01328 Folio 599 Volume 03540 Folio 955

Created by instrument 653044 12/06/1911

REGISTERED PROPRIETOR

Estate Fee Simple
TENANTS IN COMMON
As to 1 of a total of 3 equal undivided shares
Sole Proprietor
 NICHOLAS STANLEY DELLIOS of LERDERDERG GORGE RD BACCHUS MARSH 3340
As to 2 of a total of 3 equal undivided shares
Sole Proprietor
 DELLIOS BROS PTY LTD of LEVEL 6/161 COLLINS ST MELBOURNE 3000
 U572430Y 30/12/1996

ENCUMBRANCES, CAVEATS AND NOTICES

MORTGAGE U572433P 30/12/1996 NATIONAL AUSTRALIA BANK LTD

Any encumbrances created by Section 98 Transfer of Land Act 1958 or Section 24 Subdivision Act 1988 and any other encumbrances shown or entered on the plan set out under DIAGRAM LOCATION below.

DIAGRAM LOCATION

SEE TP681605Y FOR FURTHER DETAILS AND BOUNDARIES

ACTIVITY IN THE LAST 125 DAYS

NIL
-----END OF REGISTER SEARCH STATEMENT----Additional information: (not part of the Register Search Statement)
Street Address: COWANS ROAD HOPETOUN PARK VIC 3340

ADMINISTRATIVE NOTICES

NTT

eCT Control 16089P NATIONAL AUSTRALIA BANK LIMITED Effective from 22/10/2016

DOCUMENT END

Title 3540/958 Page 1 of 1

The document following this cover sheet is an imaged document supplied by LANDATA®, Victorian Land Registry Services.

Document Type	Plan
Document Identification	TP681605Y
Number of Pages	1
(excluding this cover sheet)	
Document Assembled	30/08/2021 18:27

Copyright and disclaimer notice:

© State of Victoria. This publication is copyright. No part may be reproduced by any process except in accordance with the provisions of the Copyright Act 1968 (Cth) and for the purposes of Section 32 of the Sale of Land Act 1962 or pursuant to a written agreement. The information is only valid at the time and in the form obtained from the LANDATA® System. None of the State of Victoria, LANDATA®, Victorian Land Registry Services Pty. Ltd. ABN 86 627 986 396 as trustee for the Victorian Land Registry Services Trust ABN 83 206 746 897 accept responsibility for any subsequent release, publication or reproduction of the information.

EDITION 1 TP 681605Y TITLE PLAN Notations Location of Land MERRIMU Parish: Township: Section: 15 Crown Allotment: 6 (PT) Crown Portion: Last Plan Reference: VOL 3540 FOL 958 Derived From: ANY REFERENCE TO MAP IN THE TEXT MEANS THE DIAGRAM SHOWN ON Depth Limitation: NIL THIS TITLE PLAN Description of Land / Easement Information THIS PLAN HAS BEEN PREPARED All that piece of Sound, delineated and coloured FOR THE LAND REGISTRY, LAND VICTORIA, FOR TITLE DIAGRAM PURPOSES AS PART OF THE LAND on the map in the margin containing Eighteen acres or therenbouts ---TITLES AUTOMATION PROJECT 09/11/2000 COMPILED: being part of Crown Allotment six Section fifteen Parish of Merrimu County of ----VERIFIED: Sourke Together with a right of carriage way over the roads colored brown on the COLOUR CODE BR = BROWN R, E-1, E-2, E-3, E-4 = RED 9 E-1 = EASEMENT TO SRWSC CREATED BY C/E 1876702 E-2 = EASEMENT TO SRWSC CREATED BY C/E 1687711 E-3 & E-4 = EASEMENT TO SRWSC CREATED BY C/E A394018 E-4 = EASEMENT CREATED BY C/E E853648 & F89110 (4000) R 18A OR OP E-3 450 (4000 31

TABLE OF PARCEL IDENTIFIERS

WARNING: Where multiple parcels are referred to or shown on this Title Plan this does not imply separately disposable parcels under Section 8A of the Sale of Land Act 1962

PARCEL 1 = CA 6 (PT)

LENGTHS ARE IN LINKS

Metres = 0.3048 x Feet Metres = 0.201168 x Links

Sheet 1 of 1 sheets

Appendix E – Groundwater Resource Report

Groundwater Resource Report

Groundwater catchment: West Port Phillip Bay

VICGRID94 Easting: 2457144 Northing: 2422989

Depth to water table: > 50m

Water table salinity (mg/L): 3501 - 7000

Groundwater layers (Aquifers and Aquitards)	Depth below surface (m)	Groundwater salinity (mg/L)
UTB Upper Tertiary / Quaternary Basalt basalt (fractured rock)	0 - 23	Unknown
UTAF Upper Tertiary Aquifer (fluvial) sand, gravel and clay	23 - 47	Unknown
LTA Lower Tertiary Aquifer sand, gravel, clay and silt, minor coal	47 - 55	3501 - 13000
BSE Mesozoic and Palaeozoic Bedrock (basement) sedimentary (fractured rock): Sandstone, siltstone, mudstone, shale. Igneous (fractured rock): includes volcanics, granites, granodiorites.	55 - 255	3501 - 13000

There are no GMUs at this location

For further information about this report contact: Department of Environment, Land, Water & Planning Email: ground.water@delwp.vic.gov.au

For further information on groundwater licensing in this area contact: Southern Rural Water Corporation

Phone: 1300 139 510
Email: srw@srw.com.au
Website: www.srw.com.au

Disclaimer

This publication may be of assistance to you but the State of Victoria and its employees do not guarantee that the publication is without flaw of any kind or is wholly appropriate for your particular purposes and therefore disclaims all liability for any error, loss or other consequence which may arise from you relying on any information in this publication.

Printed: 28 April 2022

How to read this report

Introduction

Groundwater is part of the water cycle. When rain or snow falls on land, some of it evaporates, some flows to streams and rivers, and some seeps into the soil. Some of the water in the soil is used by plants but some continues to move down through the soil and rock until all the pores and cracks are full of water. This is known as the water table and this water is called groundwater.

Groundwater is a finite resource that, like surface water, is allocated under the Water Act (1989). A Bore Construction Licence is required to drill for groundwater including for domestic and stock purposes. Taking and using groundwater for commercial or irrigation purposes requires an additional licence.

Purpose of this report

This report has been prepared to provide potential groundwater users with basic information about groundwater beneath their property. This includes the different geological layers, the depths of the layers and the salinity of groundwater in the layers. Information on the groundwater management units (GMU) and any associated caps on the volume that can be licensed (the PCV) are also provided.

Definitions and context

Term	Description
Groundwater Catchment	An identified area of the State within which groundwater resources are connected.
Easting / Northing	The VICGRID 94 coordinates of the spot that was selected on the interactive map.
Groundwater Salinity	Indicates the possible concentration of salts within the groundwater. The salt content indicates the possible uses of the water (see the Beneficial Use Table below). Fertilisers and other contaminants can also enter groundwater and affect its use. It is up to you to make sure that the groundwater you use is suitable for your purpose.
Aquifer	An aquifer is a layer of soil or rock which stores usable volumes of groundwater. Aquifers are generally limestones, gravels and sands, as well as some fractured rocks where the cracks in the rock are open and connected (some basalts, sandstones and limestones). How much water can be pumped from an aquifer depends on how much water is stored in pores and cracks, how well connected the pores and cracks are, and how thick the layer is. It is more likely that volumes of water for irrigation and urban water supply will come from gravels, sands, limestones and basalts that are at least 30 metres thick. Low volumes of water for domestic and stock use are likely from any aquifer greater than 10 metres thick. The advice above is a guide only, as the amount of water available can be highly variable. Actual pumping volumes can only be determined from drilling, appropriate construction and testing of a bore.
Aquitard	An aquitard is a layer of rock or soil that does not allow water to move through it easily, limiting its capacity to supply water. Aquitards are generally silts, clays and fractured rocks (where there are few cracks in the rock or the cracks are poorly connected).
Groundwater Management Unit (GMU)	A collective term for groundwater management areas (GMAs) and water supply protection areas (WSPAs). GMAs and WSPAs are defined areas and depths below the surface where rules for groundwater use may apply. WSPAs often have caps on groundwater use and plans describing how the resource is managed. GMAs usually have caps on groundwater use and may have local plans and rules. All other areas are managed directly through the Water Act (1989). Always check with your local Rural Water Corporation to be sure that the information on the GMU is correct for your specific location.
Permissible Consumptive Volume (PCV)	A cap that is set under the Water Act (1989) declaring the total volume of groundwater that may be taken from the area. Once the PCV is reached, no additional extraction can be licensed for use within the area unless traded from another groundwater licence holder.
Depth to Water Table	This is an indication of the depth at which groundwater might first be encountered when drilling a bore. The depth can vary from year to year, and from place to place and may vary significantly from that indicated in this report.

Beneficial Use Table

Salinity range (mg/L TDS)	Beneficial use as described by State Environment Protection Policy (Groundwaters of Victoria) s160							
	Potable water - preferred	Potable water - acceptable	Potable mineral water	Irrigation	Stock water	Industry	Ecosystem protection	Buildings and structures
<500	~	~	V	~	~	~	~	~
501-1000		~	~	~	~	~	~	~
1001-3500			/	/	/	/	/	1
3501-13000					~	~	/	~
13001+					1	1	/	~

Accessibility

If you would like to receive this publication in an alternate format, please telephone or email the DELWP Customer Service Centre 136 186, email customer.service@delwp.vic.gov.au, or via the National Relay Service on 133 677 www.relayservice.com.au.

© The State of Victoria Department of Environment, Land, Water & Planning 2019

This publication is copyright. No part may be reproduced by any process except in accordance with the provisions of the Copyright Act 1968.

Disclaimer

This publication may be of assistance to you but the State of Victoria and its employees do not guarantee that the publication is without flaw of any kind or is wholly appropriate for your particular purposes and therefore disclaims all liability for any error, loss or other consequence which may arise from you relying on any information in this publication.

Printed: 28 April 2022

Groundwater Resource Report

Groundwater catchment: West Port Phillip Bay

VICGRID94 Easting: 2455628 Northing: 2423285

Depth to water table: 20 - 50m Water table salinity (mg/L): 7001 - 13000

Groundwater layers (Aquifers and Aquitards)	Depth below surface (m)	Groundwater salinity (mg/L)
QA Quaternary Aquifer sand, gravels, clay, silts	0 - 21	Unknown
UTB Upper Tertiary / Quaternary Basalt basalt (fractured rock)	21 - 31	Unknown
LTA Lower Tertiary Aquifer sand, gravel, clay and silt, minor coal	31 - 67	3501 - 13000
BSE Mesozoic and Palaeozoic Bedrock (basement) sedimentary (fractured rock): Sandstone, siltstone, mudstone, shale. Igneous (fractured rock): includes volcanics, granites, granodiorites.	67 - 267	3501 - 13000

There are no GMUs at this location

For further information about this report contact: Department of Environment, Land, Water & Planning

Email: ground.water@delwp.vic.gov.au

For further information on groundwater licensing in this area contact:

Southern Rural Water Corporation

Email: srw@srw.com.au Website: www.srw.com.au

Phone: 1300 139 510

Disclaimer

Printed: 28 April 2022

How to read this report

Introduction

Groundwater is part of the water cycle. When rain or snow falls on land, some of it evaporates, some flows to streams and rivers, and some seeps into the soil. Some of the water in the soil is used by plants but some continues to move down through the soil and rock until all the pores and cracks are full of water. This is known as the water table and this water is called groundwater.

Groundwater is a finite resource that, like surface water, is allocated under the Water Act (1989). A Bore Construction Licence is required to drill for groundwater including for domestic and stock purposes. Taking and using groundwater for commercial or irrigation purposes requires an additional licence.

Purpose of this report

This report has been prepared to provide potential groundwater users with basic information about groundwater beneath their property. This includes the different geological layers, the depths of the layers and the salinity of groundwater in the layers. Information on the groundwater management units (GMU) and any associated caps on the volume that can be licensed (the PCV) are also provided.

Definitions and context

Term	Description
Groundwater Catchment	An identified area of the State within which groundwater resources are connected.
Easting / Northing	The VICGRID 94 coordinates of the spot that was selected on the interactive map.
Groundwater Salinity	Indicates the possible concentration of salts within the groundwater. The salt content indicates the possible uses of the water (see the Beneficial Use Table below). Fertilisers and other contaminants can also enter groundwater and affect its use. It is up to you to make sure that the groundwater you use is suitable for your purpose.
Aquifer	An aquifer is a layer of soil or rock which stores usable volumes of groundwater. Aquifers are generally limestones, gravels and sands, as well as some fractured rocks where the cracks in the rock are open and connected (some basalts, sandstones and limestones). How much water can be pumped from an aquifer depends on how much water is stored in pores and cracks, how well connected the pores and cracks are, and how thick the layer is. It is more likely that volumes of water for irrigation and urban water supply will come from gravels, sands, limestones and basalts that are at least 30 metres thick. Low volumes of water for domestic and stock use are likely from any aquifer greater than 10 metres thick. The advice above is a guide only, as the amount of water available can be highly variable. Actual pumping volumes can only be determined from drilling, appropriate construction and testing of a bore.
Aquitard	An aquitard is a layer of rock or soil that does not allow water to move through it easily, limiting its capacity to supply water. Aquitards are generally silts, clays and fractured rocks (where there are few cracks in the rock or the cracks are poorly connected).
Groundwater Management Unit (GMU)	A collective term for groundwater management areas (GMAs) and water supply protection areas (WSPAs). GMAs and WSPAs are defined areas and depths below the surface where rules for groundwater use may apply. WSPAs often have caps on groundwater use and plans describing how the resource is managed. GMAs usually have caps on groundwater use and may have local plans and rules. All other areas are managed directly through the Water Act (1989). Always check with your local Rural Water Corporation to be sure that the information on the GMU is correct for your specific location.
Permissible Consumptive Volume (PCV)	A cap that is set under the Water Act (1989) declaring the total volume of groundwater that may be taken from the area. Once the PCV is reached, no additional extraction can be licensed for use within the area unless traded from another groundwater licence holder.
Depth to Water Table	This is an indication of the depth at which groundwater might first be encountered when drilling a bore. The depth can vary from year to year, and from place to place and may vary significantly from that indicated in this report.

Beneficial Use Table

Salinity range (mg/L TDS)	Beneficial use as described by State Environment Protection Policy (Groundwaters of Victoria) s160							
	Potable water - preferred	Potable water - acceptable	Potable mineral water	Irrigation	Stock water	Industry	Ecosystem protection	Buildings and structures
<500	~	~	V	~	~	~	~	~
501-1000		~	~	~	~	~	~	~
1001-3500			/	/	/	/	/	1
3501-13000					~	~	/	~
13001+					1	1	/	~

Accessibility

If you would like to receive this publication in an alternate format, please telephone or email the DELWP Customer Service Centre 136 186, email customer.service@delwp.vic.gov.au, or via the National Relay Service on 133 677 www.relayservice.com.au.

© The State of Victoria Department of Environment, Land, Water & Planning 2019

This publication is copyright. No part may be reproduced by any process except in accordance with the provisions of the Copyright Act 1968.

Disclaimer

This publication may be of assistance to you but the State of Victoria and its employees do not guarantee that the publication is without flaw of any kind or is wholly appropriate for your particular purposes and therefore disclaims all liability for any error, loss or other consequence which may arise from you relying on any information in this publication.

Printed: 28 April 2022

Groundwater Resource Report

Groundwater catchment: West Port Phillip Bay VICGRID94 Easting: 2456385 Northing: 2423016

Depth to water table: 10 - 20m Water table salinity (mg/L): 7001 - 13000

Groundwater layers (Aquifers and Aquitards)	Depth below surface (m)	Groundwater salinity (mg/L)
QA Quaternary Aquifer sand, gravels, clay, silts	0 - 2	Unknown
UTB Upper Tertiary / Quaternary Basalt basalt (fractured rock)	2 - 36	3501 - 13000
UTAF Upper Tertiary Aquifer (fluvial) sand, gravel and clay	36 - 41	1001 - 3500
LTA Lower Tertiary Aquifer sand, gravel, clay and silt, minor coal	41 - 64	1001 - 3500
BSE Mesozoic and Palaeozoic Bedrock (basement) sedimentary (fractured rock): Sandstone, siltstone, mudstone, shale. Igneous (fractured rock): includes volcanics, granites, granodiorites.	64 - 264	3501 - 13000

There are no GMUs at this location

For further information about this report contact: Department of Environment, Land, Water & Planning

Email: ground.water@delwp.vic.gov.au

For further information on groundwater licensing in this area contact:

Southern Rural Water Corporation

Phone: 1300 139 510
Email: srw@srw.com.au
Website: www.srw.com.au

Printed: 28 April 2022 Date Updated: 11 January 2019

How to read this report

Introduction

Groundwater is part of the water cycle. When rain or snow falls on land, some of it evaporates, some flows to streams and rivers, and some seeps into the soil. Some of the water in the soil is used by plants but some continues to move down through the soil and rock until all the pores and cracks are full of water. This is known as the water table and this water is called groundwater.

Groundwater is a finite resource that, like surface water, is allocated under the Water Act (1989). A Bore Construction Licence is required to drill for groundwater including for domestic and stock purposes. Taking and using groundwater for commercial or irrigation purposes requires an additional licence.

Purpose of this report

This report has been prepared to provide potential groundwater users with basic information about groundwater beneath their property. This includes the different geological layers, the depths of the layers and the salinity of groundwater in the layers. Information on the groundwater management units (GMU) and any associated caps on the volume that can be licensed (the PCV) are also provided.

Definitions and context

Term	Description
Groundwater Catchment	An identified area of the State within which groundwater resources are connected.
Easting / Northing	The VICGRID 94 coordinates of the spot that was selected on the interactive map.
Groundwater Salinity	Indicates the possible concentration of salts within the groundwater. The salt content indicates the possible uses of the water (see the Beneficial Use Table below). Fertilisers and other contaminants can also enter groundwater and affect its use. It is up to you to make sure that the groundwater you use is suitable for your purpose.
Aquifer	An aquifer is a layer of soil or rock which stores usable volumes of groundwater. Aquifers are generally limestones, gravels and sands, as well as some fractured rocks where the cracks in the rock are open and connected (some basalts, sandstones and limestones). How much water can be pumped from an aquifer depends on how much water is stored in pores and cracks, how well connected the pores and cracks are, and how thick the layer is. It is more likely that volumes of water for irrigation and urban water supply will come from gravels, sands, limestones and basalts that are at least 30 metres thick. Low volumes of water for domestic and stock use are likely from any aquifer greater than 10 metres thick. The advice above is a guide only, as the amount of water available can be highly variable. Actual pumping volumes can only be determined from drilling, appropriate construction and testing of a bore.
Aquitard	An aquitard is a layer of rock or soil that does not allow water to move through it easily, limiting its capacity to supply water. Aquitards are generally silts, clays and fractured rocks (where there are few cracks in the rock or the cracks are poorly connected).
Groundwater Management Unit (GMU)	A collective term for groundwater management areas (GMAs) and water supply protection areas (WSPAs). GMAs and WSPAs are defined areas and depths below the surface where rules for groundwater use may apply. WSPAs often have caps on groundwater use and plans describing how the resource is managed. GMAs usually have caps on groundwater use and may have local plans and rules. All other areas are managed directly through the Water Act (1989). Always check with your local Rural Water Corporation to be sure that the information on the GMU is correct for your specific location.
Permissible Consumptive Volume (PCV)	A cap that is set under the Water Act (1989) declaring the total volume of groundwater that may be taken from the area. Once the PCV is reached, no additional extraction can be licensed for use within the area unless traded from another groundwater licence holder.
Depth to Water Table	This is an indication of the depth at which groundwater might first be encountered when drilling a bore. The depth can vary from year to year, and from place to place and may vary significantly from that indicated in this report.

Beneficial Use Table

Salinity range (mg/L TDS)	Beneficial use as described by State Environment Protection Policy (Groundwaters of Victoria) s160							
	Potable water - preferred	Potable water - acceptable	Potable mineral water	Irrigation	Stock water	Industry	Ecosystem protection	Buildings and structures
<500	~	~	V	~	~	~	~	~
501-1000		~	~	~	~	~	~	~
1001-3500			/	/	/	/	/	/
3501-13000					~	~	/	~
13001+					1	1	/	~

Accessibility

If you would like to receive this publication in an alternate format, please telephone or email the DELWP Customer Service Centre 136 186, email customer.service@delwp.vic.gov.au, or via the National Relay Service on 133 677 www.relayservice.com.au.

© The State of Victoria Department of Environment, Land, Water & Planning 2019

This publication is copyright. No part may be reproduced by any process except in accordance with the provisions of the Copyright Act 1968.

Disclaimer

This publication may be of assistance to you but the State of Victoria and its employees do not guarantee that the publication is without flaw of any kind or is wholly appropriate for your particular purposes and therefore disclaims all liability for any error, loss or other consequence which may arise from you relying on any information in this publication.

Printed: 28 April 2022

Groundwater Resource Report

Groundwater catchment: West Port Phillip Bay

VICGRID94 Easting: 2455348 Northing: 2423338

Depth to water table: 20 - 50m

Water table salinity (mg/L): 7001 - 13000

Groundwater layers (Aquifers and Aquitards)	Depth below surface (m)	Groundwater salinity (mg/L)
QA Quaternary Aquifer sand, gravels, clay, silts	0 - 13	Unknown
LTA Lower Tertiary Aquifer sand, gravel, clay and silt, minor coal	13 - 61	3501 - 13000
BSE Mesozoic and Palaeozoic Bedrock (basement) sedimentary (fractured rock): Sandstone, siltstone, mudstone, shale. Igneous (fractured rock): includes volcanics, granites, granodiorites.	61 - 261	3501 - 13000

There are no GMUs at this location

For further information about this report contact: Department of Environment, Land, Water & Planning Email: ground.water@delwp.vic.gov.au

For further information on groundwater licensing in this area contact: Southern Rural Water Corporation

Phone: 1300 139 510
Email: srw@srw.com.au
Website: www.srw.com.au

Disclaimer

This publication may be of assistance to you but the State of Victoria and its employees do not guarantee that the publication is without flaw of any kind or is wholly appropriate for your particular purposes and therefore disclaims all liability for any error, loss or other consequence which may arise from you relying on any information in this publication.

Printed: 28 April 2022

Date Updated: 11 January 2019

How to read this report

Introduction

Groundwater is part of the water cycle. When rain or snow falls on land, some of it evaporates, some flows to streams and rivers, and some seeps into the soil. Some of the water in the soil is used by plants but some continues to move down through the soil and rock until all the pores and cracks are full of water. This is known as the water table and this water is called groundwater.

Groundwater is a finite resource that, like surface water, is allocated under the Water Act (1989). A Bore Construction Licence is required to drill for groundwater including for domestic and stock purposes. Taking and using groundwater for commercial or irrigation purposes requires an additional licence.

Purpose of this report

This report has been prepared to provide potential groundwater users with basic information about groundwater beneath their property. This includes the different geological layers, the depths of the layers and the salinity of groundwater in the layers. Information on the groundwater management units (GMU) and any associated caps on the volume that can be licensed (the PCV) are also provided.

Definitions and context

Term	Description
Groundwater Catchment	An identified area of the State within which groundwater resources are connected.
Easting / Northing	The VICGRID 94 coordinates of the spot that was selected on the interactive map.
Groundwater Salinity	Indicates the possible concentration of salts within the groundwater. The salt content indicates the possible uses of the water (see the Beneficial Use Table below). Fertilisers and other contaminants can also enter groundwater and affect its use. It is up to you to make sure that the groundwater you use is suitable for your purpose.
Aquifer	An aquifer is a layer of soil or rock which stores usable volumes of groundwater. Aquifers are generally limestones, gravels and sands, as well as some fractured rocks where the cracks in the rock are open and connected (some basalts, sandstones and limestones). How much water can be pumped from an aquifer depends on how much water is stored in pores and cracks, how well connected the pores and cracks are, and how thick the layer is. It is more likely that volumes of water for irrigation and urban water supply will come from gravels, sands, limestones and basalts that are at least 30 metres thick. Low volumes of water for domestic and stock use are likely from any aquifer greater than 10 metres thick. The advice above is a guide only, as the amount of water available can be highly variable. Actual pumping volumes can only be determined from drilling, appropriate construction and testing of a bore.
Aquitard	An aquitard is a layer of rock or soil that does not allow water to move through it easily, limiting its capacity to supply water. Aquitards are generally silts, clays and fractured rocks (where there are few cracks in the rock or the cracks are poorly connected).
Groundwater Management Unit (GMU)	A collective term for groundwater management areas (GMAs) and water supply protection areas (WSPAs). GMAs and WSPAs are defined areas and depths below the surface where rules for groundwater use may apply. WSPAs often have caps on groundwater use and plans describing how the resource is managed. GMAs usually have caps on groundwater use and may have local plans and rules. All other areas are managed directly through the Water Act (1989). Always check with your local Rural Water Corporation to be sure that the information on the GMU is correct for your specific location.
Permissible Consumptive Volume (PCV)	A cap that is set under the Water Act (1989) declaring the total volume of groundwater that may be taken from the area. Once the PCV is reached, no additional extraction can be licensed for use within the area unless traded from another groundwater licence holder.
Depth to Water Table	This is an indication of the depth at which groundwater might first be encountered when drilling a bore. The depth can vary from year to year, and from place to place and may vary significantly from that indicated in this report.

Beneficial Use Table

Salinity range	E	Beneficial use as	described by Sta	te Environmen	t Protection Policy	(Groundwater	rs of Victoria) s1	60
(mg/L TDS)	Potable water - preferred	Potable water - acceptable	Potable mineral water	Irrigation	Stock water	Industry	Ecosystem protection	Buildings and structures
<500	~	~	V	~	/	~	~	~
501-1000		~	~	~	~	~	~	~
1001-3500			/	/	/	/	/	/
3501-13000					~	~	/	~
13001+						/	/	~

Accessibility

If you would like to receive this publication in an alternate format, please telephone or email the DELWP Customer Service Centre 136 186, email customer.service@delwp.vic.gov.au, or via the National Relay Service on 133 677 www.relayservice.com.au.

© The State of Victoria Department of Environment, Land, Water & Planning 2019

This publication is copyright. No part may be reproduced by any process except in accordance with the provisions of the Copyright Act 1968.

Disclaimer

This publication may be of assistance to you but the State of Victoria and its employees do not guarantee that the publication is without flaw of any kind or is wholly appropriate for your particular purposes and therefore disclaims all liability for any error, loss or other consequence which may arise from you relying on any information in this publication.

Printed: 28 April 2022

Date Updated: 11 January 2019

Appendix F – Borelogs

PROJECT NUMBER 20220134 **CLIENT** Bacchus Marsh Property Group ADDRESS 124 Hopetoun Park Rd

DRILLING COMPANY Horizon Drilling PROJECT NAME Hopetoun Park Preliminary Site DRILLING RIG Custom 4WD **DRILLING METHOD** Solid Auger TOTAL DEPTH 1.0 mbgl **DRILLING DATE** 09/06/2022 **DIAMETER** 100 mm

LOGGED BY ED **CHECKED BY** GM

Depth (m)	Drilling Method	Graphic Log	Material Description	PID	Samples	Additional Observations
0.05 0.1	SA		FILL: CL - Sandy CLAY, grey-brown, medium grained sand. With silt, with rootlets, minor fine basalt crushed rock gravel, dry - moist, loose.	0.1	BH01 - 0.1	
0.15						
0.2 0.25						
0.3			NAT: Silty CLAY, high plasticity, red-brown, stiff-very stiff.			
0.35						
0.4						
0.5				0.1	BH01 - 0.5	
0.55						
0.6			Becomes yellow brown.			
0.7						
0.75						
0.8 0.85						
0.9						
0.95					/BH01 - \	
1			Termination Depth at: 1 mbgl. Target Depth Reached.	0.3	1.0	

ENVIRONMENTAL BORE BH02

PROJECT NUMBER 20220134 PROJECT NAME Hopetoun Park Preliminary Site DRILLING RIG Custom 4WD **CLIENT** Bacchus Marsh Property Group ADDRESS 124 Hopetoun Park Rd

DRILLING COMPANY Horizon Drilling **DRILLING METHOD** Solid Auger TOTAL DEPTH 1.0 mbgl **DIAMETER** 100 mm

LOGGED BY ED CHECKED BY GM

Depth (m)	Drilling Method	Graphic Log	Material Description	PID	Samples	Additional Observations
0.05	SA		FILL: CL - Sandy CLAY, grey-brown, medium grained sand. With silt, with rootlets, minor fine basalt crushed rock gravel, dry - moist, loose.		/BH02 -	
0.1				0.1	0.1	
0.15						
0.2						
0.25						
0.3			NAT: Silty CLAY, high plasticity, red-brown, stiff-very stiff.			
0.35						
0.45						
0.5				0.1	BH02 - 0.5	
0.55						
0.6			Becomes yellow brown, with trace fine to medium			
0.65			calcareous gravels.			
0.7						
0.75						
0.8						
0.85						
0.9						
0.95					BH02 - 1.0	
1			Termination Depth at: 1 mbgl. Target Depth Reached.	0.1	,	

ENVIRONMENTAL BORE BH03

PROJECT NUMBER 20220134 PROJECT NAME Hopetoun Park Preliminary Site DRILLING RIG Custom 4WD **CLIENT** Bacchus Marsh Property Group ADDRESS 124 Hopetoun Park Rd

DRILLING COMPANY Horizon Drilling **DRILLING METHOD** Solid Auger TOTAL DEPTH 1.0 mbgl **DIAMETER** 100 mm

LOGGED BY ED CHECKED BY GM

Depth (m)	Drilling Method	Graphic Log	Material Description	PID	Samples	Additional Observations
0.05	SA		FILL: CL - Sandy CLAY, grey-brown, medium grained sand. With silt, minor fine basalt crushed rock gravel, dry, loose.			
0.1				0.1	BH03 - \ 0.1	
0.15						
0.2						
0.25						
0.3			Clayey SILT - pale red - brown, dry, compacted.			
0.35						
0.4						
0.45					BH03 - 0.5	
0.5				0.1	J 0.5	
0.55			NAT: Silty CLAY, high plasticity, red-brown, hard, dry.			
0.6						
0.65						
0.75						
0.8						
0.85						
0.9						
0.95						
-1			Termination Depth at: 1 mbgl. Target Depth Reached.	0.0	BH03 - 1.0	

ENVIRONMENTAL BORE BH04

PROJECT NUMBER 20220134 PROJECT NAME Hopetoun Park Preliminary Site DRILLING RIG Custom 4WD **CLIENT** Bacchus Marsh Property Group ADDRESS 124 Hopetoun Park Rd

DRILLING COMPANY Horizon Drilling **DRILLING METHOD** Solid Auger TOTAL DEPTH 1.0 mbgl **DIAMETER** 100 mm

LOGGED BY ED CHECKED BY GM

Depth (m)	Drilling Method	Graphic Log	Material Description	PID	Samples	Additional Observations
0.05	SA		FILL: Clayey SAND, red - brown, loose, dry, with fine gravel (basalt crushed rock).			
0.1				0.2	BH04 - \ 0.1	
0.15						
0.2						
0.25						
0.3			FILL: Gravelly CLAY, medium plasticity, yellow - brown, hard, dry, with sand and silt.	-		
0.35						
0.45						
0.5				0.0	BH04 - 0.5	
0.55						
0.6			NAT: Silty CLAY, high plasticity, yellow - brown, hard, dry.			
0.65						
0.7						
0.75						
0.8						
0.85						
0.95						
-1			Termination Depth at: 1 mbgl. Target Depth Reached.	0.1	BH04 - \	

ENVIRONMENTAL BORE BH05

PROJECT NUMBER 20220134 PROJECT NAME Hopetoun Park Preliminary Site DRILLING RIG Custom 4WD **CLIENT** Bacchus Marsh Property Group ADDRESS 124 Hopetoun Park Rd

DRILLING COMPANY Horizon Drilling **DRILLING METHOD** Solid Auger TOTAL DEPTH 1.0 mbgl **DIAMETER** 100 mm

LOGGED BY ED CHECKED BY GM

Depth (m)	Drilling Method	Graphic Log	Material Description	PID	Samples	Additional Observations
- 0.05	SA		FILL: Gravelly CLAY, red-brown, moist, loose, with minor fine basalt crushed rock gravel.			
0.1				0.1	BH05 - 0.1	
0.15						
0.2						
0.25						
0.35			NAT: Silty CLAY, high plasticity, yellow - brown, hard, dry.			
0.4						
0.45					BH05 -	
0.5				0.1	0.5	
0.55						
0.65						
0.7				_		
0.75			Becoming more brown.			
0.8						
0.85						
0.9						
0.95					BH05 - 1.0	
-1			Termination Depth at: 1 mbgl. Target Depth Reached.	0.1	1.0	

ENVIRONMENTAL BORE BH05

PROJECT NUMBER 20220134 PROJECT NAME Hopetoun Park Preliminary Site DRILLING RIG Custom 4WD **CLIENT** Bacchus Marsh Property Group ADDRESS 124 Hopetoun Park Rd

DRILLING COMPANY Horizon Drilling **DRILLING METHOD** Solid Auger TOTAL DEPTH 1.0 mbgl **DIAMETER** 100 mm

LOGGED BY ED CHECKED BY GM

0.05 0.1 0.15 0.2 0.25 0.3	SA	FILL: Sandy CLAY, dark brown, moist, loose, with minor fine basalt crushed rock gravel. Less gravel below 0.1 mbgl. NAT: CLAY, high plasticity, red - brown, hard.	0.3	BH06 - \ 0.1	Additional Observations
0.3		NAT: CLAY high placticity rad, brown bord			
- 0.4		ייסה. פבסד, הוקוד piasuully, reu - טוטwii, fiafu.			
0.45 0.5 0.55		Becoming pale brown, with fine to medium grained gravel.	0.3	BH06 - 0.5	
0.6 0.65 0.7					
0.75 0.8 0.85					
0.95		Termination Depth at: 1 mbgl. Target Depth Reached.	1.0	BH06 - \	

ENVIRONMENTAL BORE BH07

PROJECT NUMBER 20220134 PROJECT NAME Hopetoun Park Preliminary Site DRILLING RIG Custom 4WD **CLIENT** Bacchus Marsh Property Group ADDRESS 124 Hopetoun Park Rd

DRILLING COMPANY Horizon Drilling **DRILLING METHOD** Solid Auger TOTAL DEPTH 1.0 mbgl **DIAMETER** 100 mm

LOGGED BY ED **CHECKED BY** GM

Depth (m)	Drilling Method	Graphic Log	Material Description	PID	Samples	Additional Observations
	SA	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	FILL: Gravel, dry.		BH07 - \ 0.1 +	
0.1			FILL: Reworked CLAY, red - brown, hard.	0.2	FD - 01 + FS - 01	
).2			FILL: Reworked CLAY, pale brown, dry, with gravel.			
0.3						
0.4						
0.5				0.2	BH07 - 0.5	
0.6						
0.7						
0.8		9 \$ 10:10 9 \$ 2.	NAT: Gravelly CLAY, high plasticity, brown, stiff, dry - moist, with gravel.			
0.9						
1			Silty CLAY - high plasticity, brown, stiff, dry - moist, with minor fine gravel.	0.2	BH07 - \ 1.0	
1.1			minor into gravor.			
1.2						
1.3						
1.4						
					BH07 -	
1.5	+		Termination Depth at: 1.5 mbgl. Target Depth Reached.	0.2	1.5	

ENVIRONMENTAL BORE BH08

PROJECT NUMBER 20220134 PROJECT NAME Hopetoun Park Preliminary Site DRILLING RIG Custom 4WD **CLIENT** Bacchus Marsh Property Group ADDRESS 124 Hopetoun Park Rd

DRILLING COMPANY Horizon Drilling **DRILLING METHOD** Solid Auger TOTAL DEPTH 1.0 mbgl **DIAMETER** 100 mm

LOGGED BY ED CHECKED BY GM

Depth (m)	Drilling Method	Graphic Log	Material Description	PID	Samples	Additional Observations
0.05	SA		FILL: Clayey SILT, brown, dry - moist, loose, with trace gravel, with rootlets.		BH08 - 0.1 +	
0.1			NAT: CLAY with silt, medium plasticity, red - brown and mottled white, firm.	0.2	Bag	
).15						
0.2						
0.25						
0.35						
0.4						
0.45						
0.5				0.5	BH08 - 0.5	
0.55						
0.6						
0.65						
0.7						
0.75						
0.8			Silty CLAY, brown, pale grey mottled, dry, hard, with minor gravel.	1		
0.9						
0.95						
4			Termination Depth at: 1.5 mbgl. Target Depth Reached.	0.5	BH08 - 1.0	

DRILLING COMPANY Horizon Drilling

PROJECT NUMBER 20220134 PROJECT NAME Hopetoun Park Preliminary Site DRILLING RIG N/A **CLIENT** Bacchus Marsh Property Group

DRILLING METHOD Hand Auger TOTAL DEPTH 0.65 mbgl ADDRESS 124 Hopetoun Park Rd **DRILLING DATE** 09/06/2022 **DIAMETER** 100 mm

LOGGED BY ED **CHECKED BY** GM

Depth (m)	Drilling Method	Graphic Log	Material Description	PID	Samples	Additional Observations
	НА		FILL: Silty CLAY, brown, dry, loose, with gravel.			
0.05						
					BH09 - \	
0.1				0.5	0.1	
				"		
0.15			NAT: CLAY with silt, red - brown with trace gravel.	1		
0.2						
0.25						
0.3						
0.35						
0.4				0.2		
0.45						
					BH09 -	
0.5				4	0.4	
			CLAY with silt, brown, pale grey mottling, carbonaceous weathering.			
0.55						
0.6				0.4		
0.05						
0.65		<u> </u>	Termination Depth at: 0.65 mbgl due to refusal.			

DRILLING COMPANY Horizon Drilling

PROJECT NUMBER 20220134 PROJECT NAME Hopetoun Park Preliminary Site DRILLING RIG N/A **CLIENT** Bacchus Marsh Property Group

DRILLING METHOD Hand Auger TOTAL DEPTH 0.65 mbgl ADDRESS 124 Hopetoun Park Rd **DRILLING DATE** 09/06/2022 **DIAMETER** 100 mm

LOGGED BY ED **CHECKED BY** GM

Depth (m)	Drilling Method	Graphic Log	Material Description	PID	Samples	Additional Observations
0.05	НА		FILL: Silty CLAY, brown, dry, loose, with gravel.			
0.1				0.2	BH10 - 0.1	
0.15			NAT: CLAY with silt, medium plasticity, red - brown, dry - moist, with trace gravel.			
0.2			moist, with trace graver.			
0.25						
0.3						
0.35						
0.45						
0.45				0.3	BH10 - 0.5 + Bag	
0.55				0.0		
0.6						
0.65						
0.7						
0.75						
0.8			CLAY with silt, becoming brown, dry - moist, becoming softer, with gravel.	<u> </u> -		
0.85			sonor, with graver.			
0.9						
0.95					BH10 -	
1			Termination Depth at: 1.0 mbgl. Target Depth Reached.	0.4	/1.0	

PROJECT NUMBER 20220134

PROJECT NAME Hopetoun Park Preliminary Site
CLIENT Bacchus Marsh Property Group

DRILLING RIG N/A
DRILLING METHOD

CLIENT Bacchus Marsh Property Group
ADDRESS 124 Hopetoun Park Rd
DRILLING DATE 09/06/2022

DRILLING COMPANY Horizon Drilling DRILLING RIG N/A DRILLING METHOD Hand Auger TOTAL DEPTH 0.65 mbgl DIAMETER 100 mm LOGGED BY ED CHECKED BY GM

		1			ı	
Depth (m)	Drilling Method	Graphic Log	Material Description	PID	Samples	Additional Observations
	НА		FILL: Silty CLAY, brown, dry, loose, with gravel.			
0.05						
					BH11 - 0.1	
0.1				0.3	70.1	
0.15			NAT. CLAV with all and divine all attack, and have a divine	4		
			NAT: CLAY with silt, medium plasticity, red - brown, dry - moist, with trace gravel.			
0.2						
0.25						
0.3						
0.35						
0.4						
0.45						
					BH11 -	
0.5				0.3	/0.5	
0.55						
0.6						
0.65						
0.7						
0.75						
5.70						
0.8			CLAY with silt, becoming brown, dry - moist, becoming	-		
0.85			softer, with gravel.			
0.00						
0.9						
0.95						
บ.ฮป					BH11 -	
-1			Termination Depth at: 1.0 mbgl. Target Depth Reached.	0.4	/1.0	

DRILLING COMPANY Horizon Drilling

PROJECT NUMBER 20220134 **CLIENT** Bacchus Marsh Property Group

PROJECT NAME Hopetoun Park Preliminary Site DRILLING RIG N/A **DRILLING METHOD** Hand Auger TOTAL DEPTH 0.65 mbgl ADDRESS 124 Hopetoun Park Rd **DRILLING DATE** 09/06/2022 **DIAMETER** 100 mm

LOGGED BY ED **CHECKED BY** GM

Depth (m)	Drilling Method	Graphic Log	Material Description	PID	Samples	Additional Observations
0.05	НА		FILL: Gravel with silt, brown - grey, dry.		BH12 -	
0.1		~*************************************		0.23	0.1	
0.15			NAT: CLAY with silt, red - brown, dry - moist, crumbly, with gravel.			
0.2						
0.25						
0.3						
- 0.35						
0.45						
- 0.5				0.3	BH12 - 0.5	
0.55			CLAY with silt, medium plasticity, red - brown, dry - moist, with trace gravel.			
0.6						
0.65						
0.7						
0.75						
0.8						
0.85						
- 0.9						
- 0.95					BH12 - 1.0	
-1		<u> </u>	Termination Depth at: 1.0 mbgl. Target Depth Reached.	0.4	y 1.∪ \	

Appendix G – Calibration Certificates

Equipment Calibration Form

MiniRAE 3000 PID

Enqip #:

16846

Company:

Edge Group Pty Ltd

Consultant:

Natasha Dun

PO #:

20220134

Certificate #:

24980

INSTRUMENT IDENTIFICATION

Model Number: PGM 7320

Serial Number: 592-908396

INSPECTION RECORD

Flow Rate:

PASS

Buzzer:

PASS

Date & Time:

PASS

CALIBRATION DETAILS

Parameters	Standard	Result
Air	0.0 ppm	0.0 ppm
Isobutylene	100.0 ppm	100.0 ppm

Alarm Limits:

High

100

Low

50

Calibration Successful: YES

Calibrated By:

Owen Hvalica

Test Date:

8/06/2022

116 Thistlethwaite St, South Melbourne 3205 P 1300 218 987

Appendix H – Site Photos

 Glass on the former trotting track at 124 Hopetoun Park Road

2. Waste material stored at 124 Hopetoun Park Road

3. Shed at 124 Hopetoun Park Road

4. Gravel stockpile at 30 Kyle Lane

5. Photo of gravel stockpile removed (as provided by the client)

6. Waste at 249 Hopetoun Park Road.

7. Collection of stockpiles at 249 Hopetoun Park Road.

8. Anthropogenic materials in the stockpiles at 249 Hopetoun Park Road.

9. Waste at 249 Hopetoun Park Road.

10. Waste at 249 Hopetoun Park Road.

11. Waste at 249 Hopetoun Park Road.

12. Pit in shed of 249 Hopetoun Park Road

Appendix I – Laboratory Chain of Custody and Reports

CHAIN (OF CUSTODY DOC	JMENTA	TION												-						7
CLIENT: E	EDGE GROUP						SAM	IPLER:		GM	ED						_				
ADDRESS /	OFFICE: 423 CITY RD SOL	TH MELBOU	RNE				MOE	BILE:	040	9 106	3 107							_		Australian Laborato	
PROJECT N	MANAGER (PM): Natasha Du	1					PHO	NE								•				Australian Laboratory pervices my Ltu 2-4 Westall Road, Springvale, VIC 3171	
PROJECT II	D: 20220134						EMA	VIL REP	ORT TO):	nata	sha.d	lun@e	daear	างนอ.ก	et.au:	garry.n	nasur	@ed	gegroup.net.au	1
SITE: Hope	toun Park			P.O. NO.	.:		_		DICE TO								ACCUT PRO			gog, oapmona	1
	REQUIRED (Date):			_	NO.: MEBQ 108 - 2	0	_		-							must t	e listed t	o attra	ct suit	e prices)	1
e di Gia Consersa Intro Salina 10 Califa	CONTROL OF COMMY LAKE INTERNATION YES NO NA HAPPESATURES YES NO	COM	MENTS / SPEC	IAL HANDI	LING/STORAGE (OR DIPOSAL:	cides			ин орр оср	Phenols / 8 metals		Metals							Notes: e.g. Highly contaminated samples e.g. "High PAHs expected". Extra volume for QC or trace LORs etc.	nvironmental Division
	SAMPLE INFORMATION (note: S = Soil,	W=Water)		CONTAINER	NFORMATION		P22 NEPM EIL Site Classification	EPA 1828.2 Screen	6 + S-12 8 metals TRH BTEXN PAH OPP	S-27 TRH (C6-C40) / BTEXN / PAH / Phenols / 8 metals	-5 8 metals TRH BTEXN	S26 TRH (C6-C40) / BTEXN / PAH / 8 Metals	S3 15 metals	TRH BTEXN				ď		Melbourne Work Order Reference EM2211061
ALS ID	SAMPLE ID	MATRIX	DATE	Time	Type / Code	Total bottle	E 2	P22	E A	S-26	S-2.	S-5	S26	83	TR.				HOLD		[[[表/左体表的性心反應)]]]
1	BH01-0.1	s	9/6/2022	ļ.,		1	X														Telephone : + 61-3-8549 9600
$\frac{2}{2}$	BH01-0.5	S	9/6/2022	ļ		1 1					_	<u> </u>	ļ	Х		<u> </u>					Telephone + 01-0-0275
3	BH01-1.0	s	9/6/2022	 	ļ	1	_		_	ļ		_	1		<u> </u>	<u> </u>					
4	BH02-0.1	S	9/6/2022	<u> </u>	-	1 1	+-	4	_	ــــــ	_	<u> </u>	X		<u> </u>						_
5	BH02-0.5 BH02-1.0	s	9/6/2022	 	 	1	+	+-	ļ	<u> </u>	 	-	+		-						_
-6	BH03-0.1	S	9/6/2022	-		1 1			+	├	-	├—	 ,		┿		-				-1
*	BH03-0.5	s	9/6/2022			1		+	+	├	+		X	, , , , , , , , , , , , , , , , , , ,	├		\vdash				4
9	BH03-1.0	s	9/6/2022		 	- '	╫	+	+	┼	 	╁		Х	-		1				4
10	BH04-0.1	S	9/6/2022				+	+	+	 	+	├	l x				\vdash				4
63	BH04-0.5	\$	9/6/2022			- - -	+	+		 	1		+^		┿-						-
12	BH04-1.0	s	9/6/2022	 	<u> </u>	 	+-	+-	+	 	┼	 	┼		 		+ +				-
13	BH05-0.1	s	9/6/2022	1		1 1	+-	+	+	╁	 	1	 x				<u> </u>	- 1		-	Carrier: could
14	BH05-0.5	s	9/6/2022			1	1	+	+	 	<u> </u>		+ ?	x	1					Received:	Tige, (F Carrier: "Com
15	BH05-1.0	s	9/6/2022	<u> </u>		1 1	\top		-	—	\dagger	 	+`	<u> </u>						C/note:	-
16	BH06-0.1	s	9/6/2022			1	1	1	_	†	†	†	X		<u> </u>					Temp: / \\	T °C Seaft 🕜 N 💮 🧥
17	BH06-0.5	ş	9/6/2022			1	\top			 		T .	†		T					Ace / Icebr	°C Seaf: © N
15	BH06-1.0	s	9/6/2022			1	T			1.	T	1	1		1						TO TALS
19	BH07-0.1	s	9/6/2022			3	X	X		Ť	1				1		$\vdash \uparrow$			-	1
NA	BH07-0.4	s	9/6/2022			1	$oldsymbol{\mathbb{I}}$			Х			Ī								7
NE	βНQ 7-0.6	S	9/6/2022			1															7
		2 RELIN	QUISHED BY:			′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′						RE	CEIVE) BY						METHOD OF SHIPMENT	7
Name:	And				Date: 9	C 12	Nar	ne:							Date	:				Con' Note No:	7
Of:	0 0					5 300						-			Time		_				1
Name:				-	Date:		Nar	we.						•	Date					Transport Co:	┪
Of:					Time:		Of:	110.		_					Time					Transport Co:	┥

HAIN OF CUSTODY DOCUMENTATION																						
CLIENT: EDGE GROUP	SAMP	LER:		GM	ED						-	·										
ADDRESS / OFFICE: 423 CITY RD SOUTH I	MELBOUR	NE				мовіі	Œ:	040	9 106	107									Australian Laboratory Services Fry Liu			
PROJECT MANAGER (PM): Natasha Dun						PHON	E												2-4 Westall Road, Springvale, VIC 3171			
PROJECT ID: 20220134						EMAIL REPORT TO: natasha.dun@edgegroup.net.au; garry.masur@e													lgegroup.net.au			
SITE: Hopetoun Park	EMAIL	INVO	ICE TO	: acco			group															
RESULTS REQUIRED (Date):			QUOTE N	IO.: MEBQ 108 - 20		ANAL	YSIS R	EQUIR	ED inc	luding	SUITES	S (note	- suite	codes n	nust be	listed to	attrac	t suite	prices)			
RESULTS REQUIRED (Date): EGA MADERATORY USE CIPLY CBONIES SEA Internal apprendiate) Interly Yes No N/A SAMPLE JEMPARATURE CHILLED: Yes No	COM	MENTS / SPECI.	AL HANDI	ING / STORAGE OR D	iPOSAL:	P21/2 NEPM HIL A Screen with herbicides	P22 NEPM EIL Site Classification	EPA 1828.2 Screen	S-26 + S-12 8 metals TRH BTEXN PAH OPP OCP	TRH (C6-C40) / BTEXN / PAH / Phenols / 8 metals	8 metals TRH BTEXN	S26 TRH (C6-C40) / BTEXN / PAH / 8 Metals	ətals	BTEXN					Notes: e.g. Highly contaminated samples e.g. "High PAHs expected". Extra volume for QC or trace LORs etc.			
SAMPLE INFORMATION (note				CONTAINER INFO	1/2 NE	2 NEF	^A 182	26 + S	27 TR	5 8 me	6 TRF	S3 15 metals	H BTE				HOLD					
	MATRIX	DATE	Time	Type / Code	Total bottles	72	P2	_	Ġ	S-27	S-5	SZ	ß	Ε̈́Ε				오				
20 SP01 21 SP02	S S	9/6/2022 9/6/2022			1	 -		×		-							-	-				
22 SP03	s	9/6/2022			1	-	 	+	 -	 			х		<u> </u>							
23 SP04	s	9/6/2022			1	_	1		<u> </u>				<u> </u>	1								
20 SP05	s	9/6/2022			1	-						×										
25 SP06 26 SP07 27 SP08	s	9/6/2022			1			1														
26 SP07	s	9/6/2022			1								х					1				
27 SP08	s	9/6/2022			1							1										
28 SP09	s	9/6/2022			1							х										
29 SP10	s	9/6/2022			1		L	ļ														
										<u> </u>		ļ		ļ	١.							
						<u> </u>	-	1	 	<u> </u>	ļ			ļ	<u> </u>							
						<u> </u>	_	ļ	ļ	<u> </u>							_					
					L			<u> </u>	l	<u> </u>									·			
	RELIN	QUISHED BY:			73	<u> </u>					RE	CEIVE	BY						METHOD OF SHIPMENT			
Name:		-		Date: 4 / k	22	Name: Date:												Con' Note No:				
Of:				Time: 6 🕹 🕹	fr	Of:	Of: Time:															
Name:				Date:	ľ	Nam	e:							Date	:				Transport Co:			
Of:				Time:		Of:								Time	:							

Water Container Codes: P = Unpreserved Plastic; N = Nitric Preserved Plastic; ORC = Nitric Preserved ORC; SH = Sodium Hydroxide/Cd Preserved; S = Sodium Hydroxide Preserved Plastic; AG = Amber Glass Unpreserved; V = VOA Vial HCI Preserved; VS = VOA Vial Sulphuric Preserved; SG = Sulfuric Preserved Amber Glass; H = HCI preserved Plastic; HS = HCI preserved Speciation bottle; SP = Sulfuric Preserved Plastic; F = Formaldehyde Preserved Glass; Z = Zinc Acetate Preserved Bottle; E = EDTA Preserved Bottles; ST = Sterile Bottle; ASS = Plastic Bad for Acid Sulphate Soils; B = Unpreserved Bag.

CHAIN O	F CUSTODY DOC	MENTA	TION																		•		1
CLIENT: ED	GE GROUP							SAME	PLER:		GM	ED								-			
ADDRESS / C	OFFICE: 423 CITY RD SOU	TH MELBOUR	RNE					мові	ILE:	040	09 106	107									Australian Laboratory se	LS	
PROJECT MA	ANAGER (PM): Natasha Dun															2-4 Westall Road, Springs							
PROJECT ID:										ORT TO	D:	natas	sha.du	 നമില	daeara	DUD DE	et.au:	garry.	masu	r@ed	gegroup.net.au		
SITE: Hopeto				P.O. NO.:				1			: <u>acco</u>												
	QUIRED (Date):			QUOTE NO	D.: MEBQ	108 - 20		+									must bi	e listed	to attrac	ct suite	prices)		
遊園經 海景田 (1904年) (1904年)	PARA PRODUP PERIOD REPORTAGO (A) REC BYA PERIOD PERIOD PER NO	COM	MENTS / SPEC	IAL HANDLI	NG / STO	RAGE OR	DIPOSAL:	n with herbicides	Classification		TRH BTEXN PAH OPP OCP			BTEXN / PAH / 8 Metals							Notes: e.g. Highly contamina e.g. "High PAHs expected". Extra volume for QC or trace		
ALS ID	SAMPLE INFORMATION (I	note: S = Soil, MATRIX	W=Water) DATE	Time		<u>AINER INF</u> / Code	ORMATION Total bottles	P21/2 NEPM HIL A Scree	P22 NEPM EIL Site Class	EPA 1828.2 Screen	S-26 + S-12 8 metals TRP	Phenois	S-5 8 metals TRH BTEXN	S26 TRH (C6-C40) / BTE)	S3 15 metals	IRH BTEXN				НОГБ			
30	BH08-0.1	s	9/6/2022	111110	Турс	, code	2	<u> </u>	п.	Ш	X	<u> </u>	S	S	S	┢	-	+		T			
31	BH08-0.5	s	9/6/2022				2	1	 x	+	 ^	 	Χ.,				_	+-		-			
32	BH08-1.0	s	9/6/2022	1			1	\vdash	 ^`	┼─	 	t			 			+					1
31 32 33 34 35 36 37 38 39	BH09-0.1	s	9/6/2022				2	X	†						l								
2 u	BH09-0.5	s	9/6/2022				1						X										1
35	BH09-1.0	s	9/6/2022				1		Ī	1													1
36	BH10-0.1	s	9/6/2022				2				х												
37	BH10-0.5	s	9/6/2022				1						Х										1
38	BH10-1.0	s	9/6/2022				1]
39	BH11-0.1	S	9/6/2022				2	Х]
40	BH11-0.5	s	9/6/2022				11						х				<u> </u>		L.,				
41	BH1-1.0	s	9/6/2022				11	1_	<u> </u>								,						
42	BH12-0.1	S	9/6/2022				2		Ļ		ļ	x	х					<u> </u>					1
42	BH12-0.5	S	9/6/2022	 			1	1	<u> </u>		ļ	<u> </u>	Х										
40	BH12-1.0	s	9/6/2022				1	↓	 	<u> </u>		<u> </u>	<u> </u>	ļ <u>.</u>	L	ļ	ļ	1	igsquare				1
45	FDO1	S	9/6/2022	ļ ļ	,_		1	 	╁	<u> </u>	 	<u> </u>	<u> </u>	<u> </u>	X				<u>L</u>	ļ			
	- FS01 -	S	9/6/2022				1	1		↓—	 	ļ			X						Send to Envi	icloub fo	r analyst pleased (FSO
46	RINS01	S	9/6/2022				1 1		+	↓	-	1	<u> </u>		X	ļ.,.	<u> </u>	_	<u> </u>	<u> </u>		<u> </u>	ിത്രി
47	TRIP01	s	9/6/2022	JL			1	-				Ь	L			Х			<u> </u>				Passor
		RELIN	QUISHED BY:				 _ _	ļ					RE	CEIVE	D BY						METHOD OF SHIP	MENT	1 FS0
Name:	2/	\sim			Date: 4	1/6	22	Nam	ne:							Date	:				Con' Note No:] (, 50
Of:				T·	Time:	C_{C} :	Cra Day	Of:								Time	e:						
Name:					Date:		1	Nam	ne:							Date	:				Transport Co:		1
Of:					Time:		-	Of:						•		Time		-					1
Oi.					mile.			OI.								Hille	•						l

48. BHO7-0.8 5 9/6/22AUSTRALIAN LABORATORY SERVICES P/L
49. BHO7-1.0 5 9/6/22 Extra Somple

COC Page $\frac{3}{2}$ of $\frac{3}{2}$

Natasha Dun

From: Natasha Dun

Sent: Thursday, 16 June 2022 2:53 PM

To: Hannah White

Cc: Garry Masur; Ella Denton; Camila Amazonas

Subject: RE: EM2211061 - EDGE GROUP - PROJECT 20220134

Hi Hannah,

Can we please get the following amendments to the COC:

- BH08-0.5 and BH09-0.5 to be analysed for S-27 instead of S-5 (so analysing for Phenols and PAHs in addition)
- BH01-0.5 to be taken off hold and analysed for S3 (15 Metals)
- SP07 to be analysed for S26 instead of S3 (so analysing for TRH, BTEXN and PAH in addition).

Sorry for the late request. Please let me know how delayed we should be expecting this report.

Kind regards,

Natasha Dun
Environmental Consultant
Edge Group Pty Ltd
423 City Road
South Melbourne, Victoria 3205
Phone (03) 8625 9696
Mobile 0424 225 324
natasha.dun@edgegroup.net.au
www.edgegroup.net.au

From: Natasha Dun

Sent: Thursday, 16 June 2022 10:54 AM

To: Hannah White <hannah.white@ALSGlobal.com>

Cc: Garry Masur <garry.masur@edgegroup.net.au>; Ella Denton <ella.denton@edgegroup.net.au>; Camila

Amazonas < Camila.amazonas@edgegroup.net.au>

Subject: RE: EM2211061 - EDGE GROUP - PROJECT 20220134

Hi Hannah.

Thanks for bringing this to my attention.

Can you please make the following actions:

- BH07-0.4, BH07-0.6 and BH09-1.0 were not taken. Please remove/ignore these.
- The jar you called BH07-0.8 is actually BH07-0.5 (apologies for messy handwriting). Please consider this sample for the S-26 analysis request (instead of the missing BH07-0.4).
- The jar you called BH09-9.6 is actually BH09-0.5 (again, apologies for messy handwriting). Please consider this sample for the S-5 analysis request (as sample #034).
- BH07-1.0 and BH07-1.5 were accidentally excluded from the COC. Thankyou for logging these as additional samples, please continue to leave them on hold.
- BH09-0.6 was also a sample that was accidentally excluded from the COC. This sample is the "third BH09/0.1" sample jar. This is the third sample from the left of your first photo, which the "0.6" resembles a "0.U". Can you please add this to the COC and put this on hold.

Regarding the insufficient sample from Sample #031 for the clay content parameter:

• Can you please make a composite sample combining Sample #031 with Sample #040 (BH11-0.5) and Sample #043 (BH12-0.5) to assess the clay content parameter?

My apologies for the confusion. Let me know if there is anything else I can assist with.

Kind regards,

Natasha Dun
Environmental Consultant
Edge Group Pty Ltd
423 City Road
South Melbourne, Victoria 3205
Phone (03) 8625 9696
Mobile 0424 225 324
natasha.dun@edgegroup.net.au
www.edgegroup.net.au

From: Hannah White <hannah.white@ALSGlobal.com>

Sent: Wednesday, 15 June 2022 5:21 PM

To: Natasha Dun < Natasha.Dun@edgegroup.net.au > Subject: EM2211061 - EDGE GROUP - PROJECT 20220134

CAUTION: This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Hi Natasha,

Please note, for the attached work order:

- We did not receive samples BH07-0.4, BH07-0.6, BH09-0.5 and BH09-1.0
- As no bag was received for sample #031 we have logged this sample for the requested P-22 analysis, without the clay content parameter.
- We did receive additional samples BH07-0.8, BH07-1.0, BH07-1.5 and BH09-9.6. Please see below for photos. These samples have been logged as additional samples to the batch and placed on hold pending further instruction. Please let us know at your earliest convenience if any analysis is required on the below.
- We also received an extra jar for sample BH09/0.1, also included in the photos below.

Thank you

Regards,

right partner.

Hannah White

Client Services Officer - Environmental, Melbourne ALS Limited

O: +61 3 8549 9600 D: +61 3 8549 9608

hannah.white@alsglobal.com

2-4 Westall Road, Springvale VIC 3171

alsglobal.com

EnviroMail™ 00 – All EnviroMails™ in one convenient library.

EnviroMail™ 135 – New Analytical Suites to meet EPA Victoria 1828.2 Guideline

EnviroMail™ 134 – ALS Australia Dioxin Capability

EnviroMail™ 133 – Sampling and Analysis of air and gas using canisters

EnviroMail™ 131 – Important Changes to the Australian Standard Leaching Procedures AS4439.2 & AS4439.3

Right Solutions • Right Partner

CERTIFICATE OF ANALYSIS

Work Order : EM2211061

Client : EDGE GROUP PTY LTD

Contact : NATASHA DUN

Address : 423 City Rd

South Melbourne

Telephone : ---

Project : 20220134

Order number : ---C-O-C number : ----

Sampler : GM and ED
Site : Hopetoun Park

Quote number : MEBQ/108/21 Primary Work

No. of samples received : 49
No. of samples analysed : 27

Page : 1 of 37

Laboratory : Environmental Division Melbourne

Contact : Hannah White

Address : 4 Westall Rd Springvale VIC Australia 3171

Telephone : +61-3-8549 9600

Date Samples Received : 10-Jun-2022 13:25

Date Analysis Commenced : 14-Jun-2022

Issue Date : 24-Jun-2022 12:22

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Laboratory Technician Newcastle - Inorganics, Mayfield West, NSW Aleksandar Vujkovic Dilani Fernando Laboratory Coordinator Melbourne Inorganics, Springvale, VIC Franco Lentini LCMS Coordinator Sydney Organics, Smithfield, NSW Senior Inorganic Chemist Jarwis Nheu Melbourne Inorganics, Springvale, VIC 2IC Organic Chemist Melbourne Inorganics, Springvale, VIC Nancy Wang Nancy Wang 2IC Organic Chemist Melbourne Organics, Springvale, VIC Nikki Stepniewski Senior Inorganic Instrument Chemist Melbourne Inorganics, Springvale, VIC Senior Organic Chemist Melbourne Organics, Springvale, VIC Xing Lin

Page : 2 of 37

Work Order : EM2211061

Client : EDGE GROUP PTY LTD

Project : 20220134

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

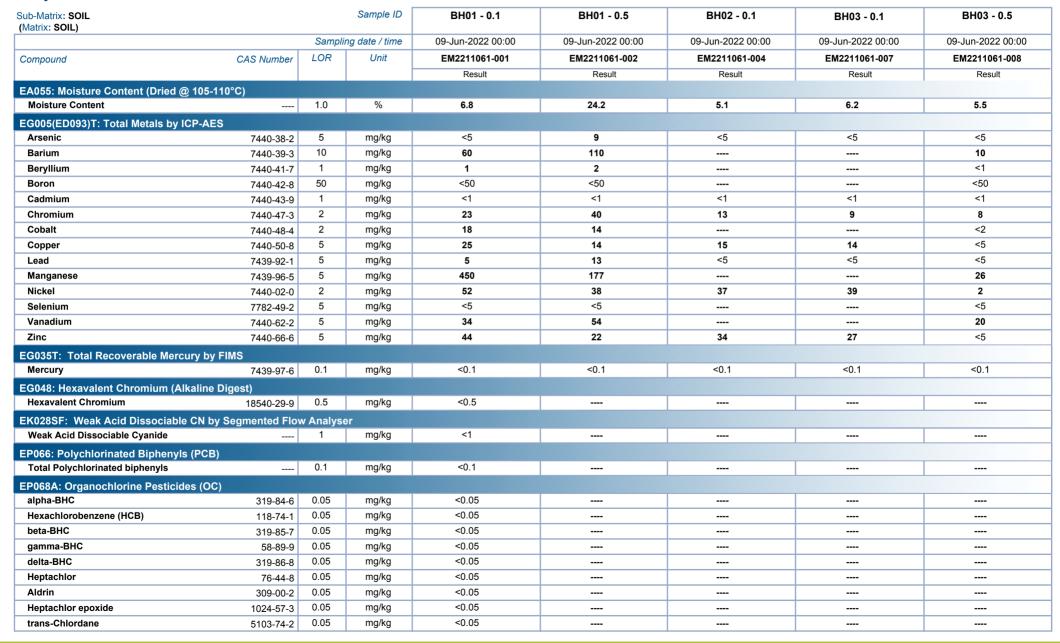
Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

A This was all in a constant from its dividual and the

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests
- ~ = Indicates an estimated value.
- EP202: Poor matrix spike recoveries for Picloram and Clopyralid due to matrix effects.
- EP202: Particular samples required dilution due to matrix interferences. LOR values have been adjusted accordingly.
- EG020-T: Metals for EM2211061 #46 has been confirmed by re-preparation and re-analysis
- ALS is not NATA accredited for the analysis of Exchangeable Cations on Alkaline Soils when performed under ALS Method ED006.
- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero, for 'TEQ 1/2LOR' are treated as half the reported LOR, and for 'TEQ LOR' are treated as being equal to the reported LOR. Note: TEQ 1/2LOR and TEQ LOR will calculate as 0.6mg/Kg and 1.2mg/Kg respectively for samples with non-detects for all of the eight TEQ PAHs.
- EP080: Where reported, Total Xylenes is the sum of the reported concentrations of m&p-Xylene and o-Xylene at or above the LOR.
- EP068: Where reported, Total Chlordane (sum) is the sum of the reported concentrations of cis-Chlordane and trans-Chlordane at or above the LOR.
- EP074-UT: Where reported, Total Xylenes is the sum of the reported concentrations of m&p-Xylene and o-Xylene at or above the LOR.
- EP068: Where reported, Total OCP is the sum of the reported concentrations of all Organochlorine Pesticides at or above LOR.
- EP075(SIM): Where reported. Total Cresol is the sum of the reported concentrations of 2-Methylphenol and 3- & 4-Methylphenol at or above the LOR.
- EP074-WF: Where reported, Sum of trichlorobenzenes is the sum of the reported concentrations of 1,2,3-Trichlorobenzene and 1,2,4-Trichlorobenzene, and 1,3,5-Trichlorobenzene at or above the LOR.
- EG005-T: EM2211035 #1 Poor duplicate precision for total Lead due to sample matrix. Confirmed by re-digestion and re-analysis.
- EG005-T: EM2211035#13 Poor duplicate precision for total Zinc due to sample matrix. Confirmed by re-digestion and re-analysis.
- EG005-T: EM2211061#14 results for total Manganese have been confirmed by re-digestion and re-analysis. It's been noticed that repeated result were greatly vary. Repeated Manganese were: 47 mg/kg, 89 mg/kg, 157 mg/kg, and 124 mg/kg.
- EG005-T: EM2211525 #10 Poor duplicate precision for total Manganese due to sample matrix. Confirmed by re-digestion and re-analysis.
- EP075(SIM): EM2211061 033 required dilution prior to analysis due to matrix interferences. LOR values have been adjusted accordingly.
- EP075-EM: EM2211035 001 Poor duplicate precision due to sample heterogeneity. Confirmed by re-extraction and re-analysis.
- EP075-EM: EM221035 012 Poor matrix spike recovery due to matrix effects.
- ED007 and ED008: When Exchangeable Al is reported from these methods, it should be noted that Rayment & Lyons (2011) suggests Exchange Acidity by 1M KCl Method 15G1 (ED005) is a more suitable method for the determination of exchange acidity (H+ + Al3+).



Page : 3 of 37 Work Order : EM2211061

Client : EDGE GROUP PTY LTD

Project : 20220134

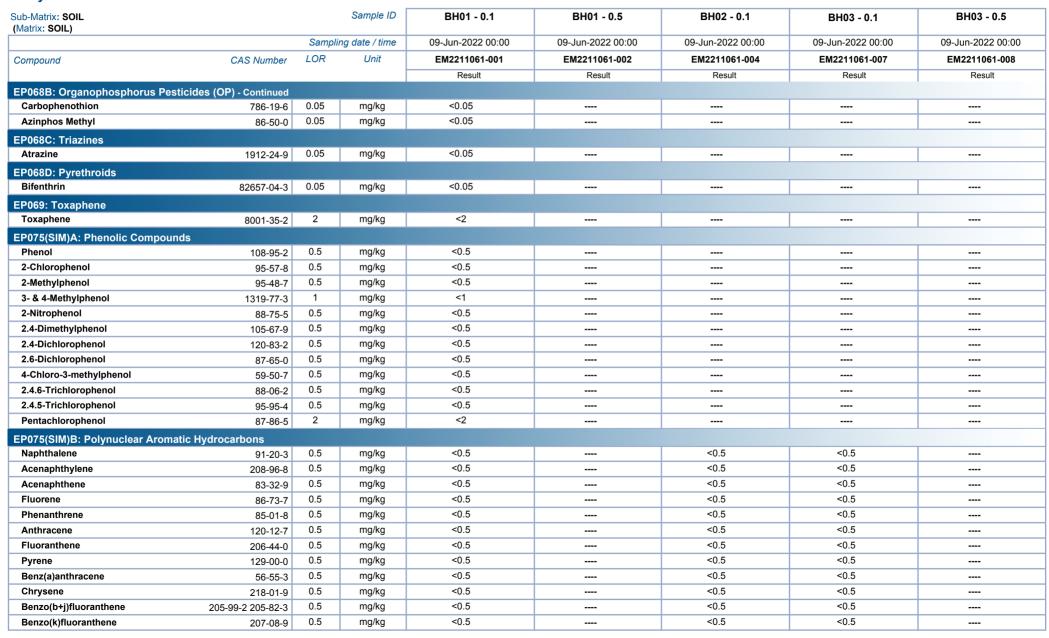
Analytical Results

Page : 4 of 37 Work Order : EM2211061

Client : EDGE GROUP PTY LTD

Project : 20220134

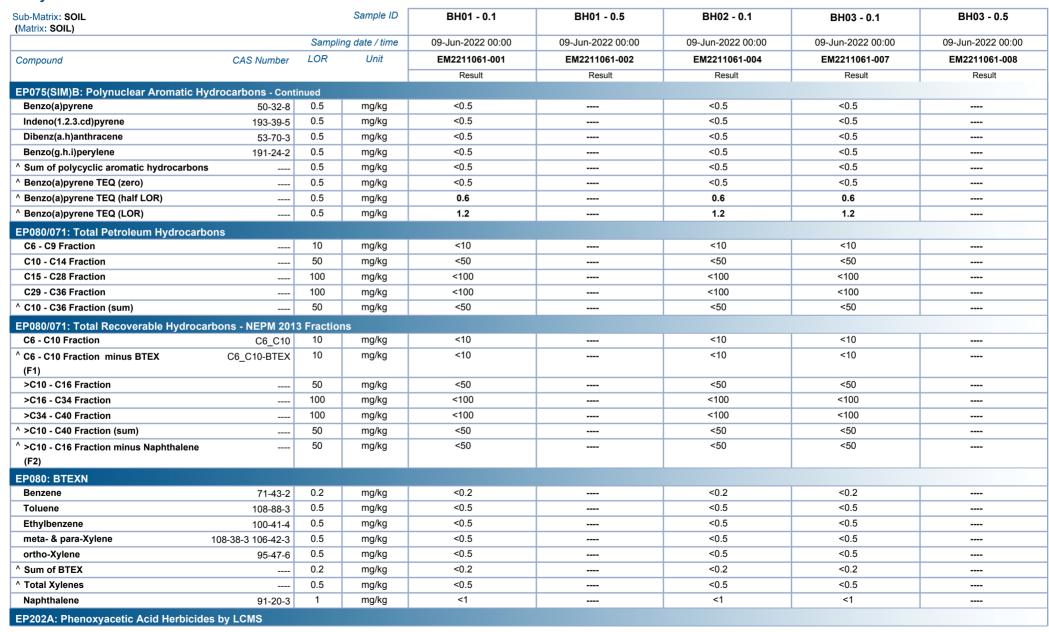
Analytical Results



Page : 5 of 37 Work Order : EM2211061

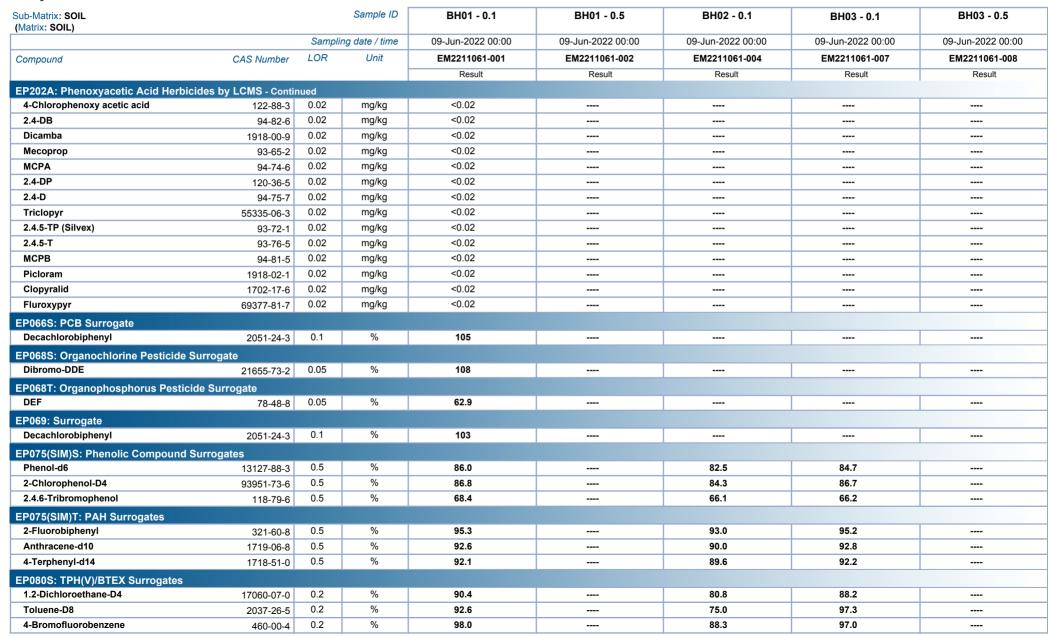
Client : EDGE GROUP PTY LTD

Project : 20220134



Page : 6 of 37 Work Order : EM2211061

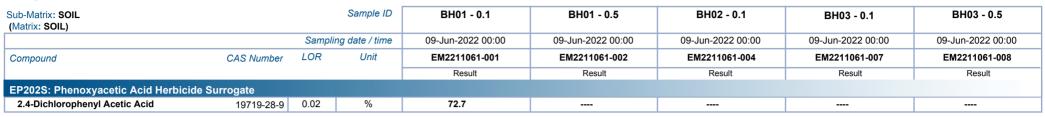
Client : EDGE GROUP PTY LTD


Project : 20220134

Page : 7 of 37 Work Order : EM2211061

Client : EDGE GROUP PTY LTD

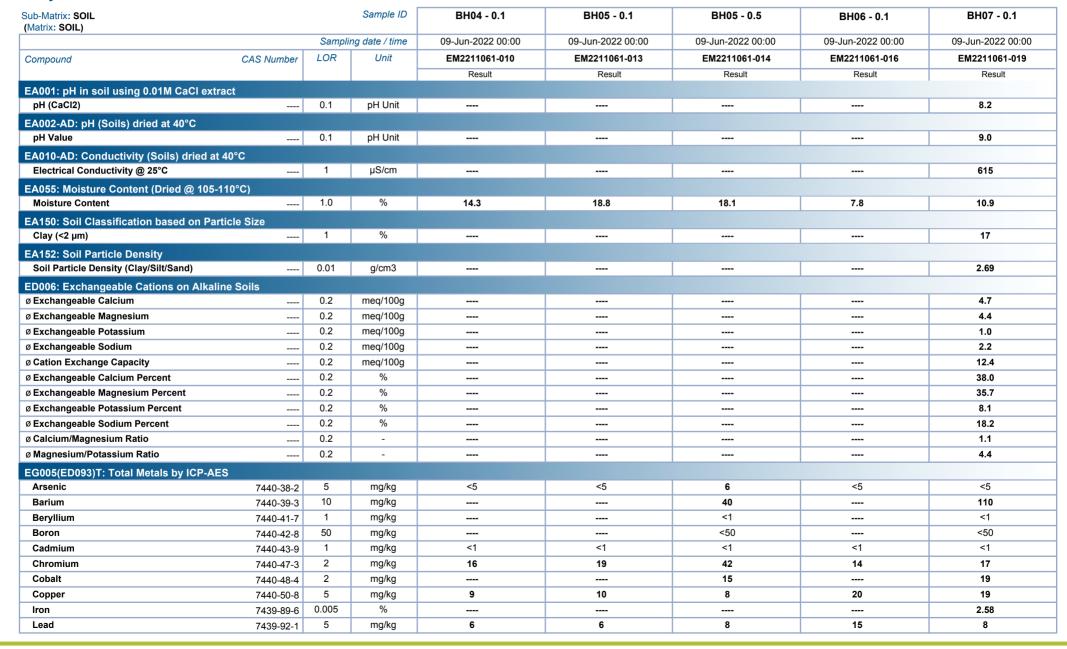
Project : 20220134



Page : 8 of 37 Work Order : EM2211061

Client : EDGE GROUP PTY LTD

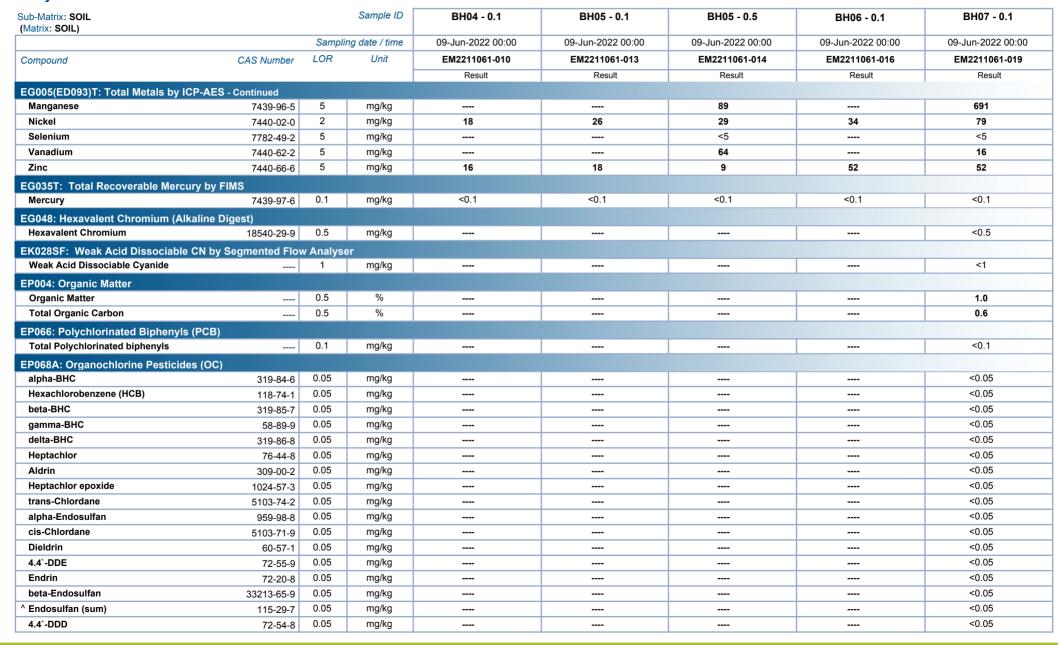
Project : 20220134



Page : 9 of 37 Work Order : EM2211061

Client : EDGE GROUP PTY LTD

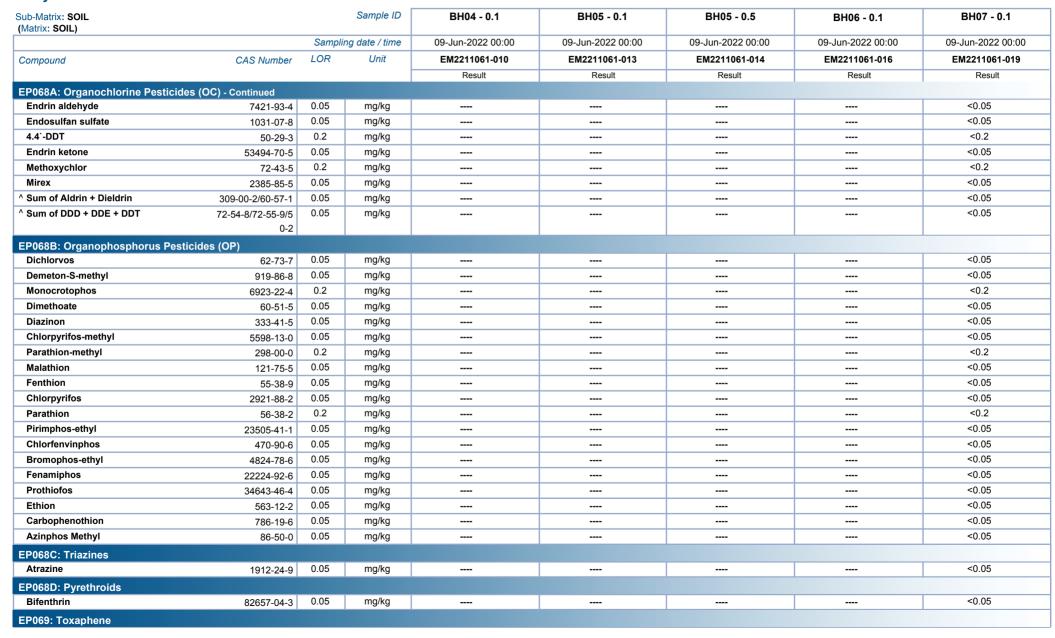
Project : 20220134



Page : 10 of 37 Work Order : EM2211061

Client : EDGE GROUP PTY LTD

Project : 20220134

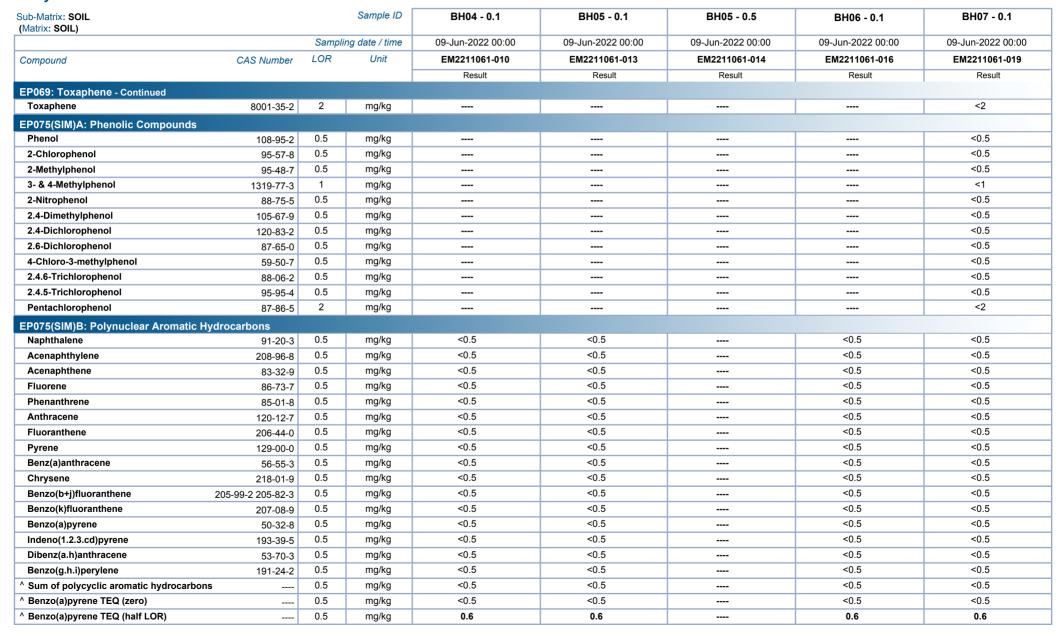


Page : 11 of 37

Work Order : EM2211061

Client : EDGE GROUP PTY LTD

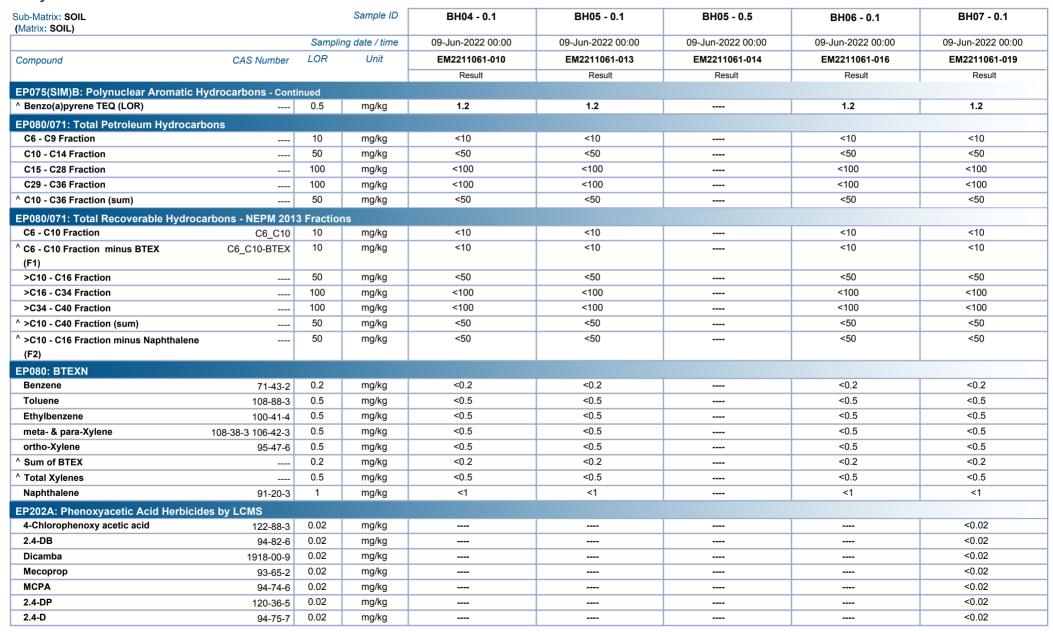
Project : 20220134



Page : 12 of 37 Work Order : EM2211061

Client : EDGE GROUP PTY LTD

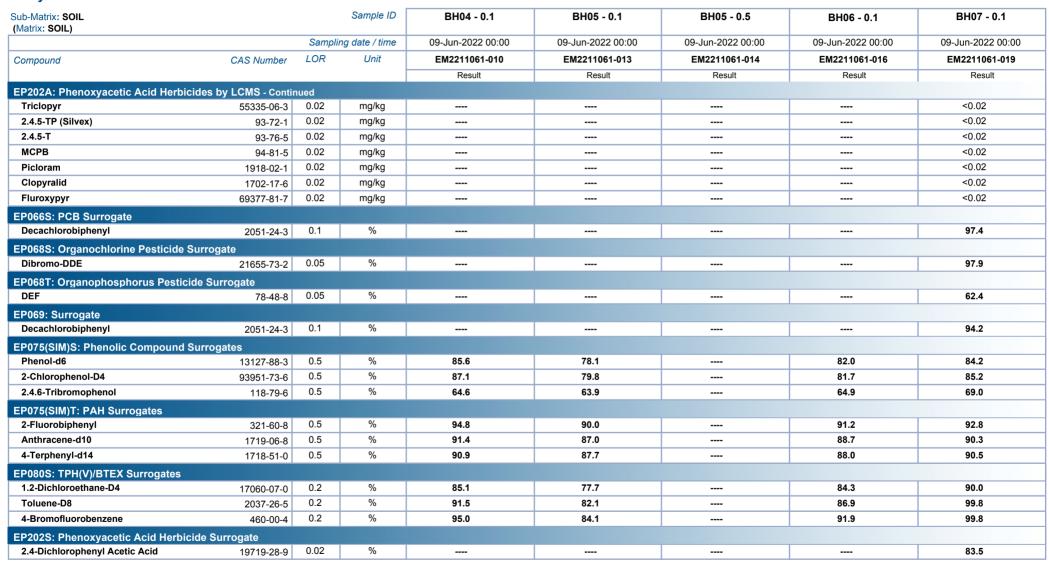
Project : 20220134



Page : 13 of 37 Work Order : EM2211061

Client : EDGE GROUP PTY LTD

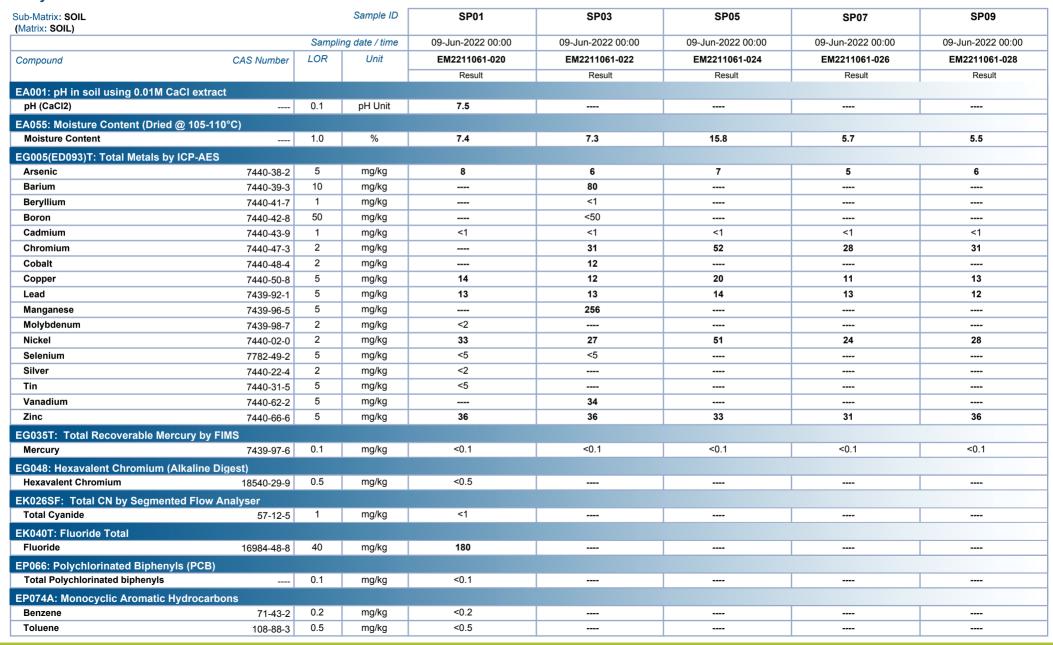
Project : 20220134



Page : 14 of 37 Work Order : EM2211061

Client : EDGE GROUP PTY LTD

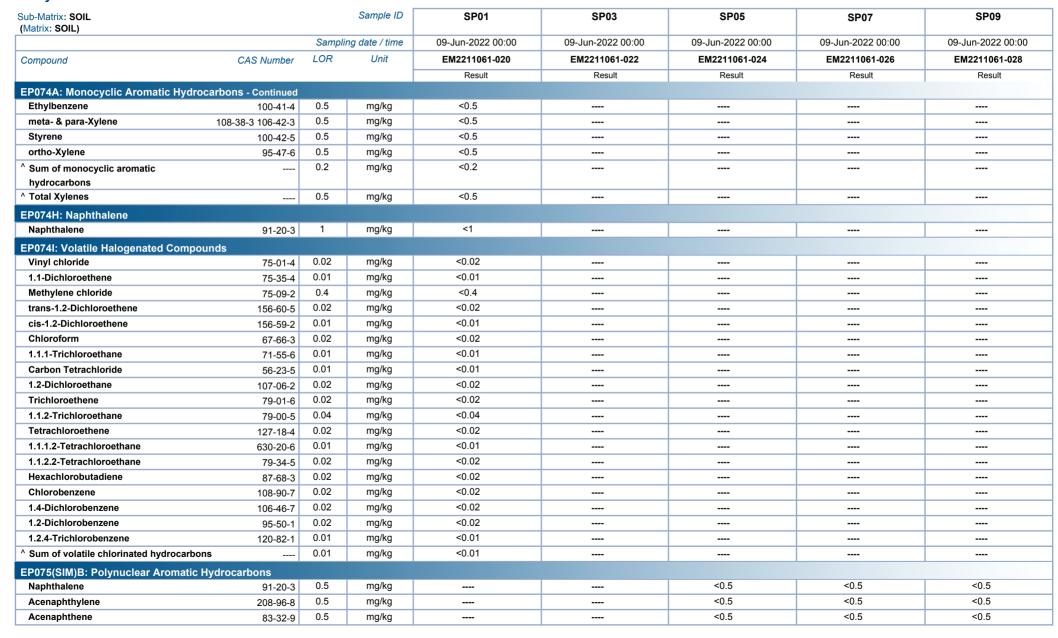
Project : 20220134



Page : 15 of 37 Work Order : EM2211061

Client : EDGE GROUP PTY LTD

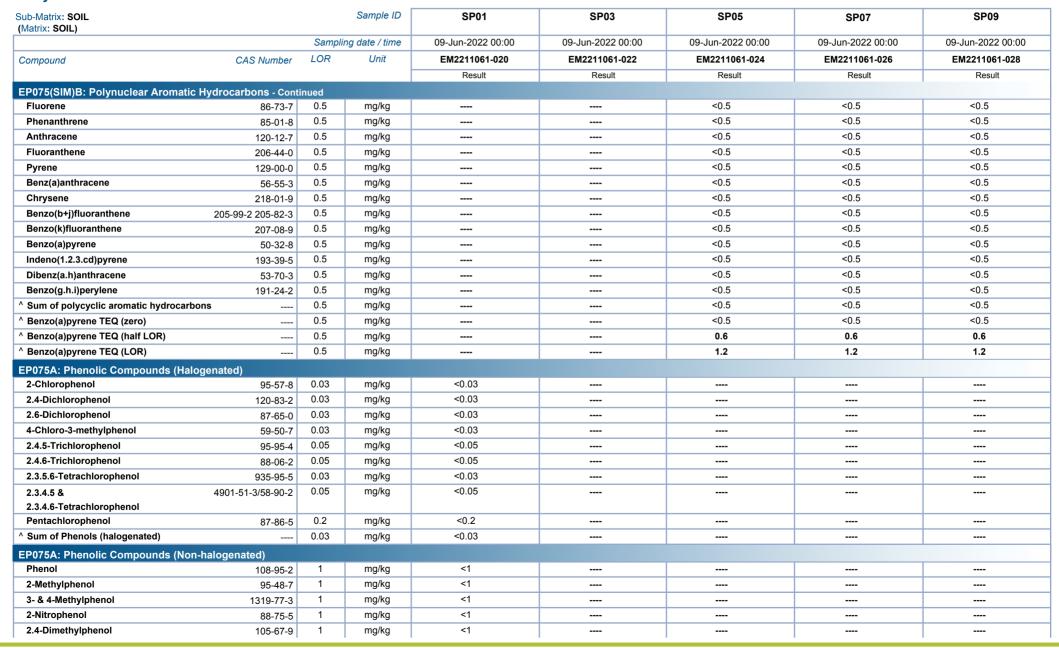
Project : 20220134



Page : 16 of 37 Work Order : EM2211061

Client : EDGE GROUP PTY LTD

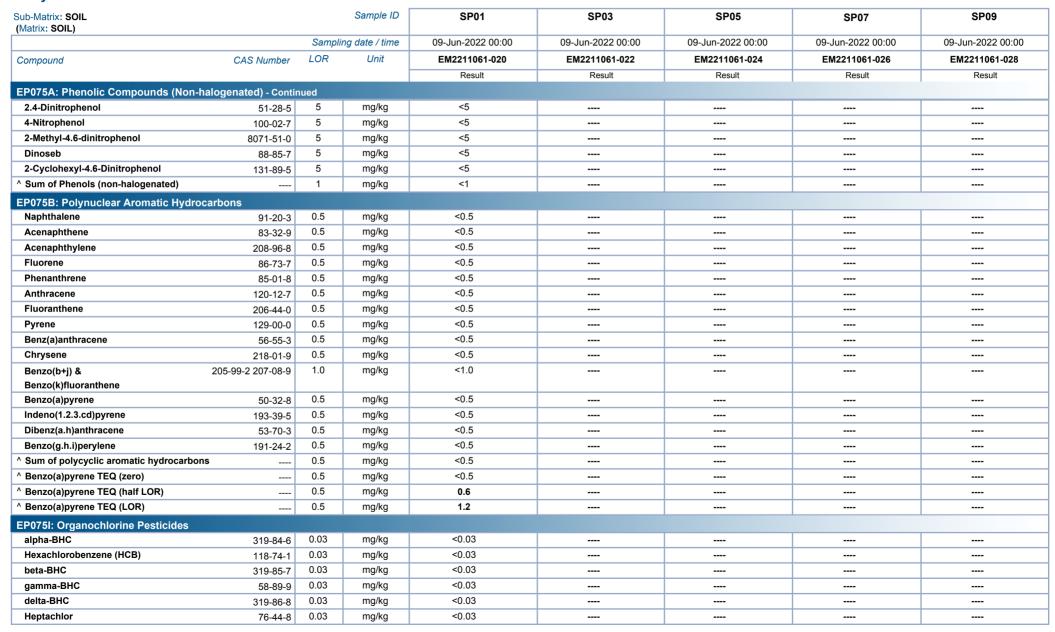
Project : 20220134



Page : 17 of 37 Work Order : EM2211061

Client : EDGE GROUP PTY LTD

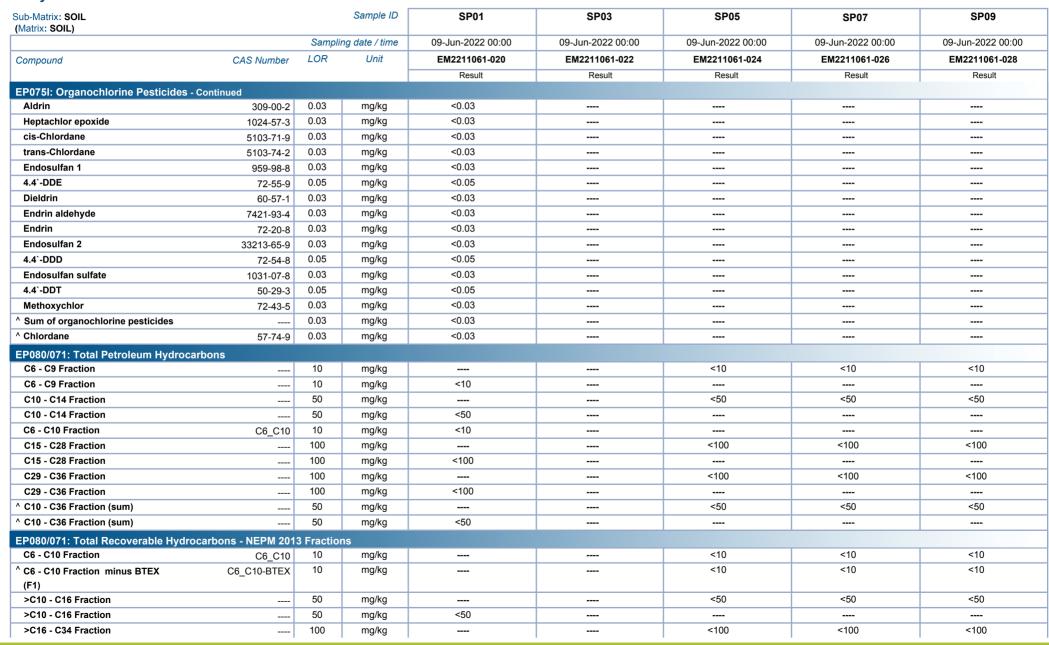
Project : 20220134



Page : 18 of 37 Work Order : EM2211061

Client : EDGE GROUP PTY LTD

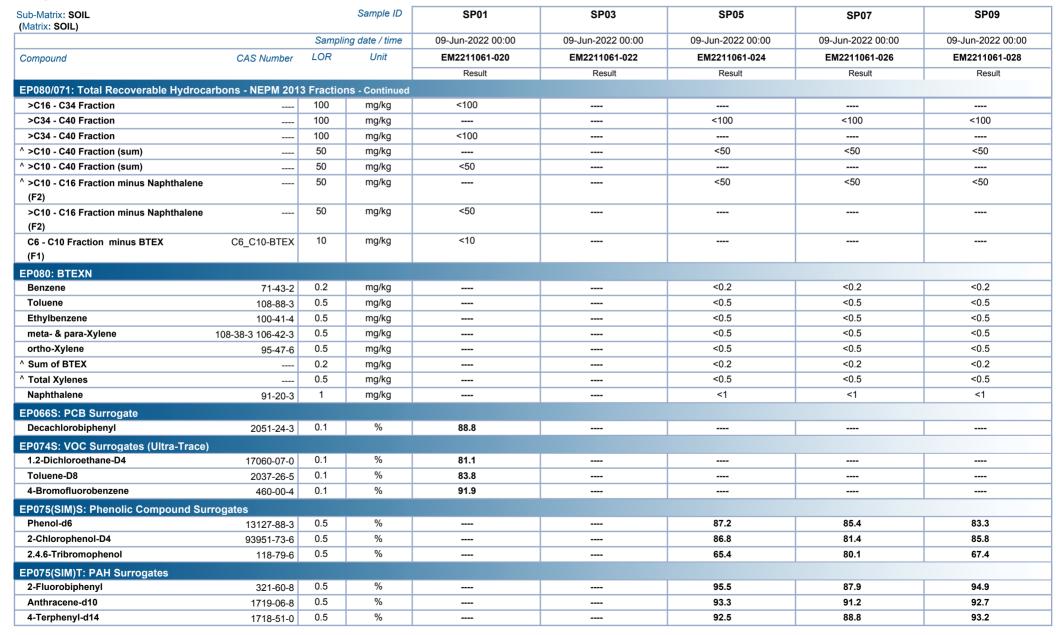
Project : 20220134



Page : 19 of 37 Work Order : EM2211061

Client : EDGE GROUP PTY LTD

Project : 20220134



Page : 20 of 37 Work Order : EM2211061

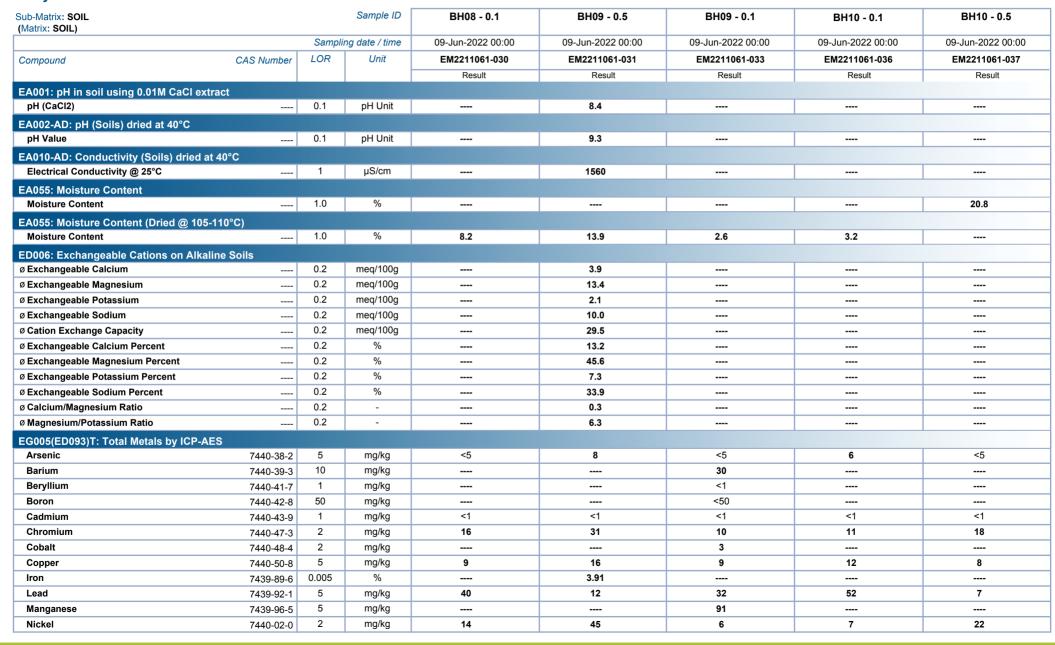
Client : EDGE GROUP PTY LTD

Project : 20220134

Page : 21 of 37 Work Order : EM2211061

Client : EDGE GROUP PTY LTD

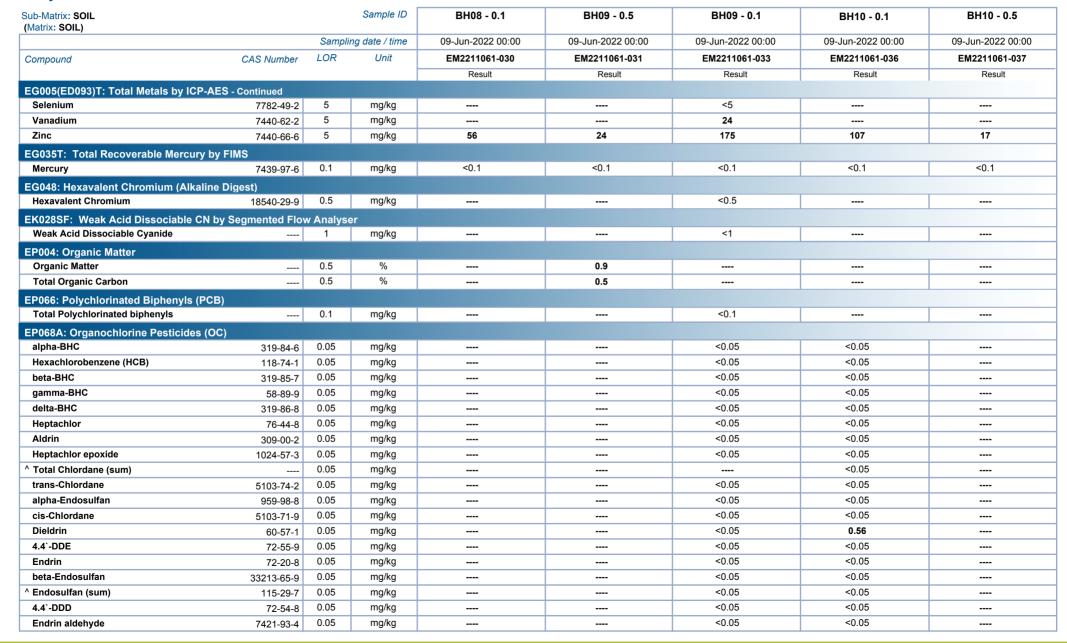
Project : 20220134



Page : 22 of 37 Work Order : EM2211061

Client : EDGE GROUP PTY LTD

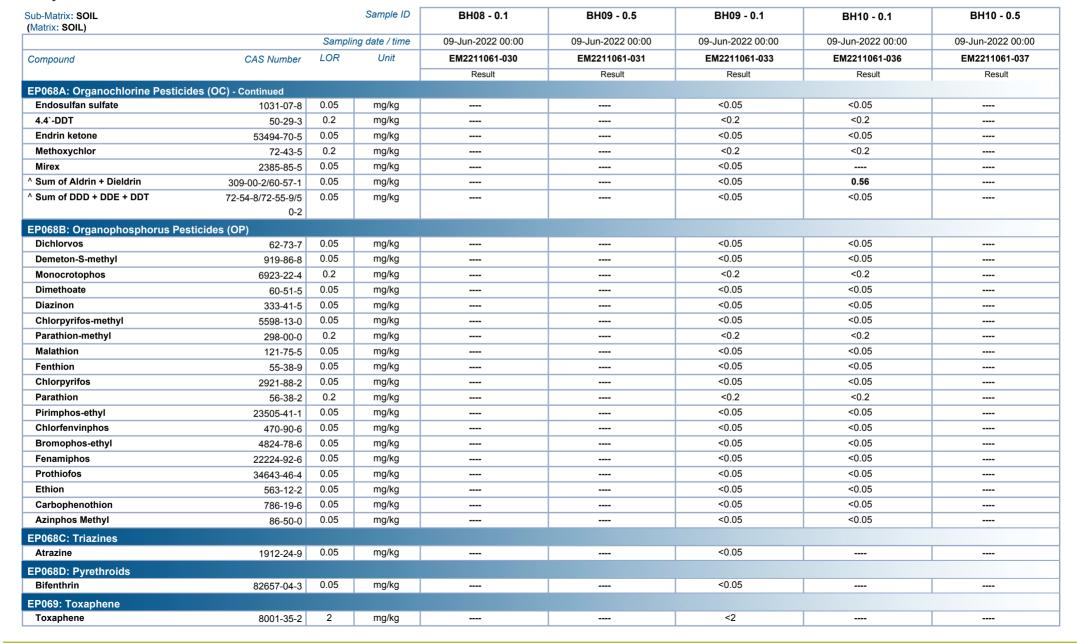
Project : 20220134



Page : 23 of 37 Work Order : EM2211061

Client : EDGE GROUP PTY LTD

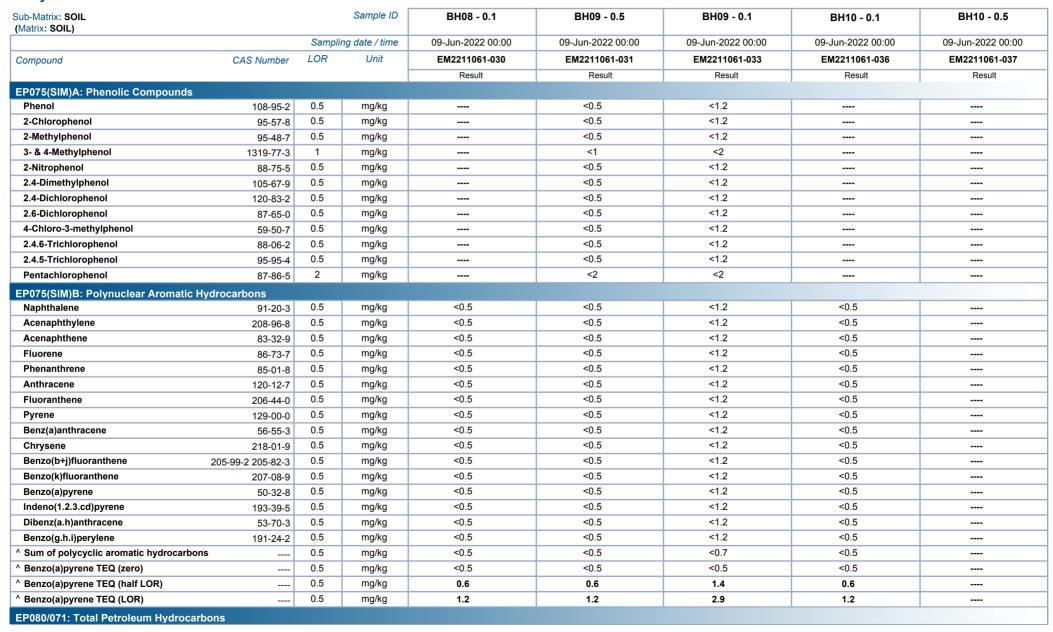
Project : 20220134



Page : 24 of 37 Work Order : EM2211061

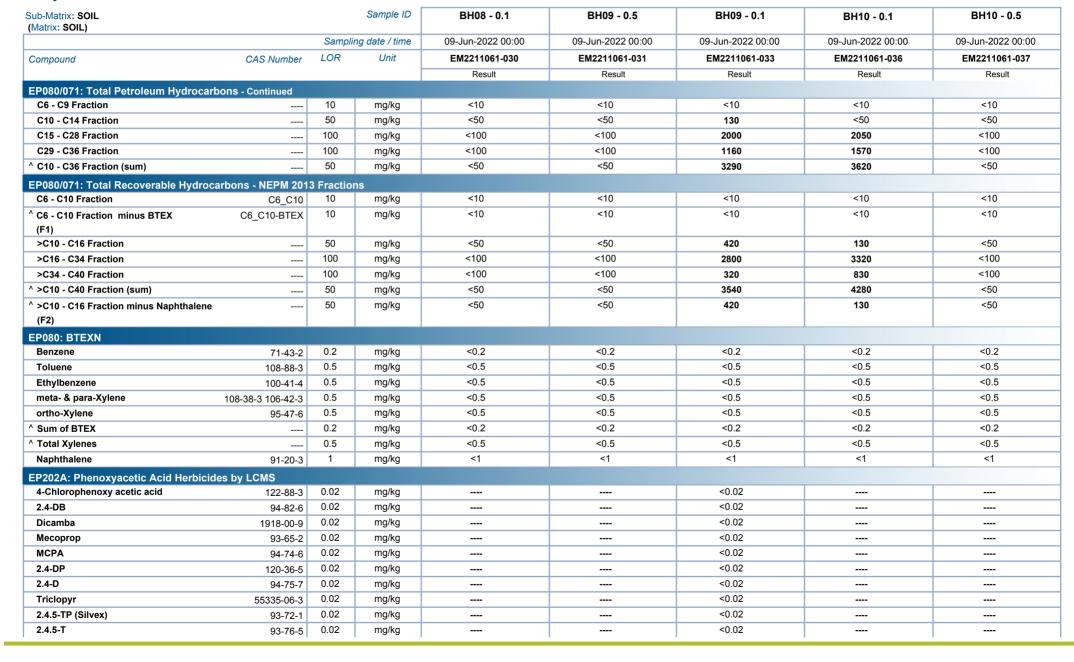
Client : EDGE GROUP PTY LTD

Project : 20220134



Page : 25 of 37 Work Order : EM2211061

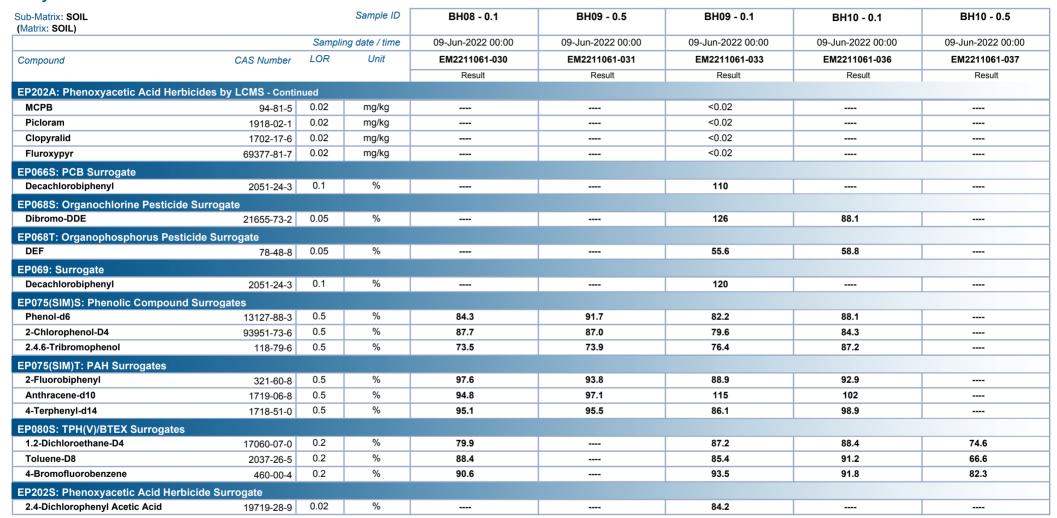
Client : EDGE GROUP PTY LTD


Project : 20220134

Page : 26 of 37 Work Order : EM2211061

Client : EDGE GROUP PTY LTD

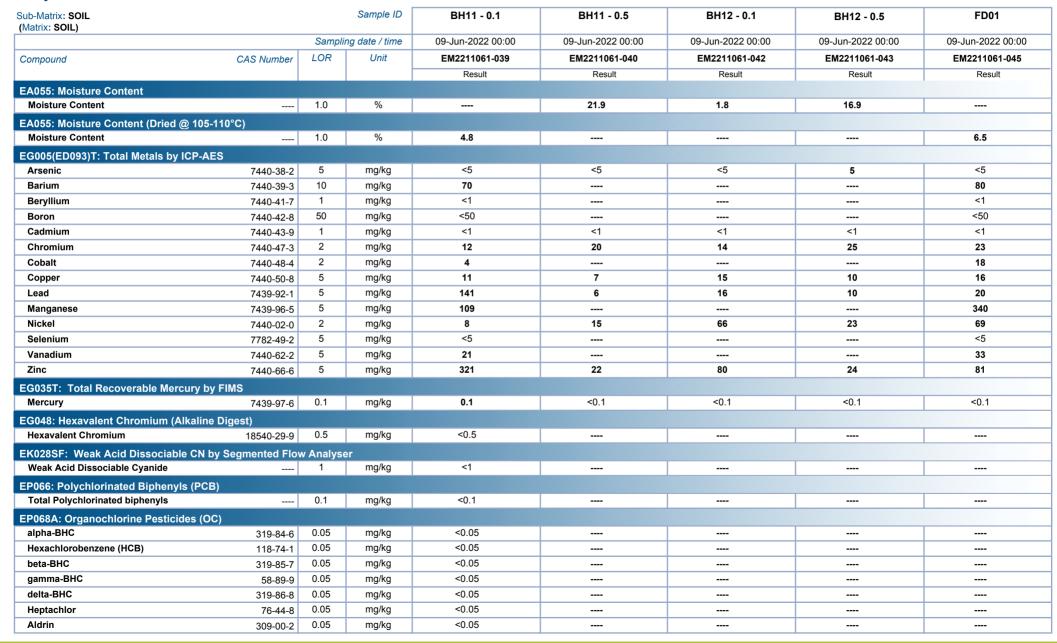
Project : 20220134



Page : 27 of 37 Work Order : EM2211061

Client : EDGE GROUP PTY LTD

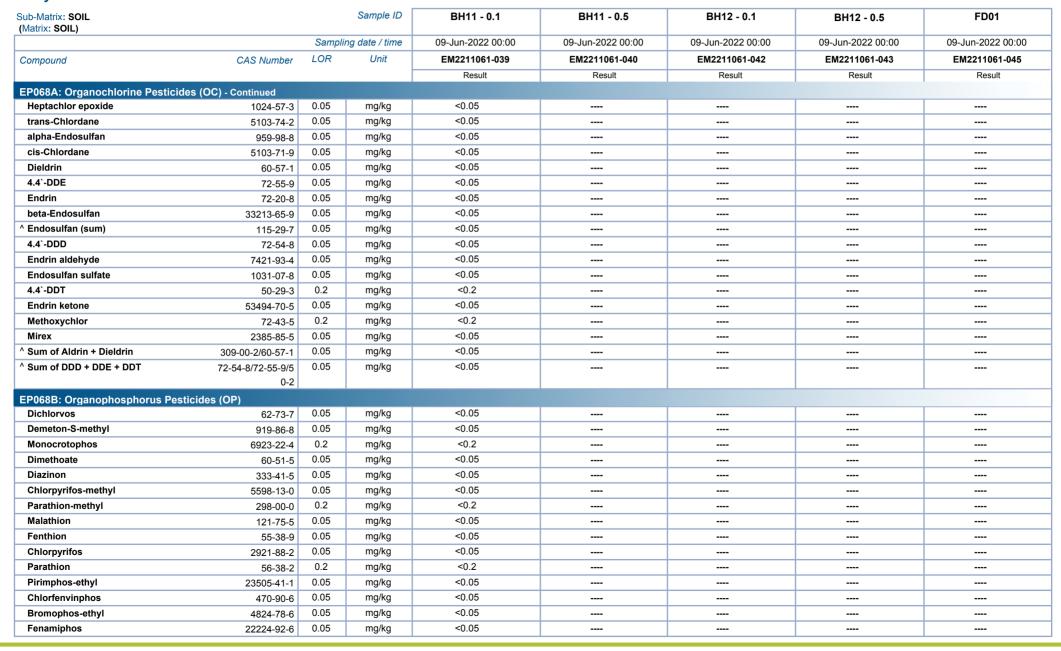
Project : 20220134



Page : 28 of 37 Work Order : EM2211061

Client : EDGE GROUP PTY LTD

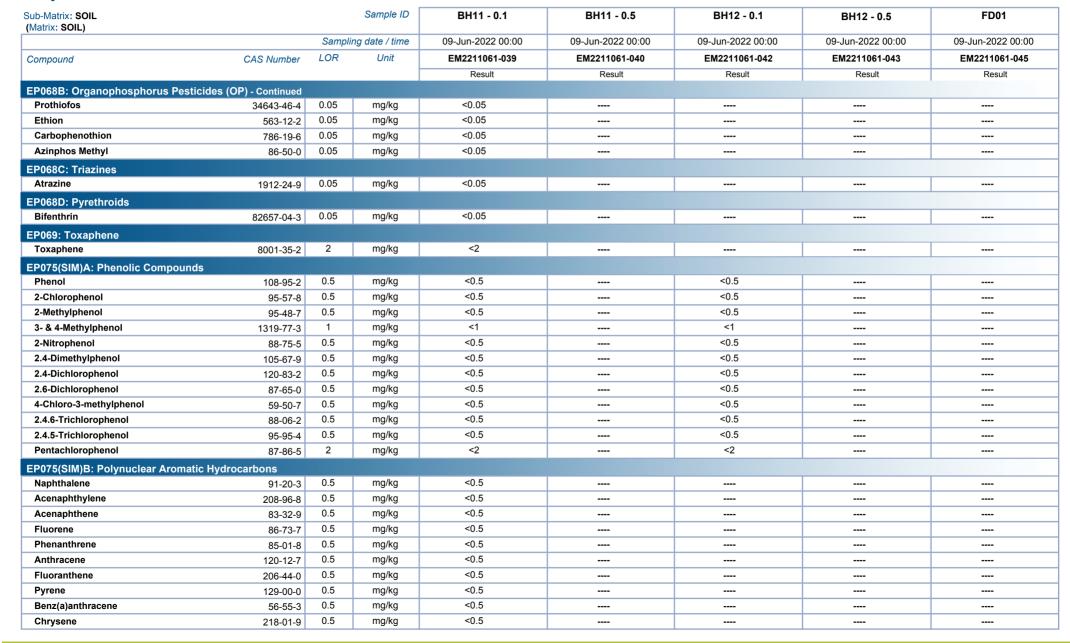
Project : 20220134



Page : 29 of 37 Work Order : EM2211061

Client : EDGE GROUP PTY LTD

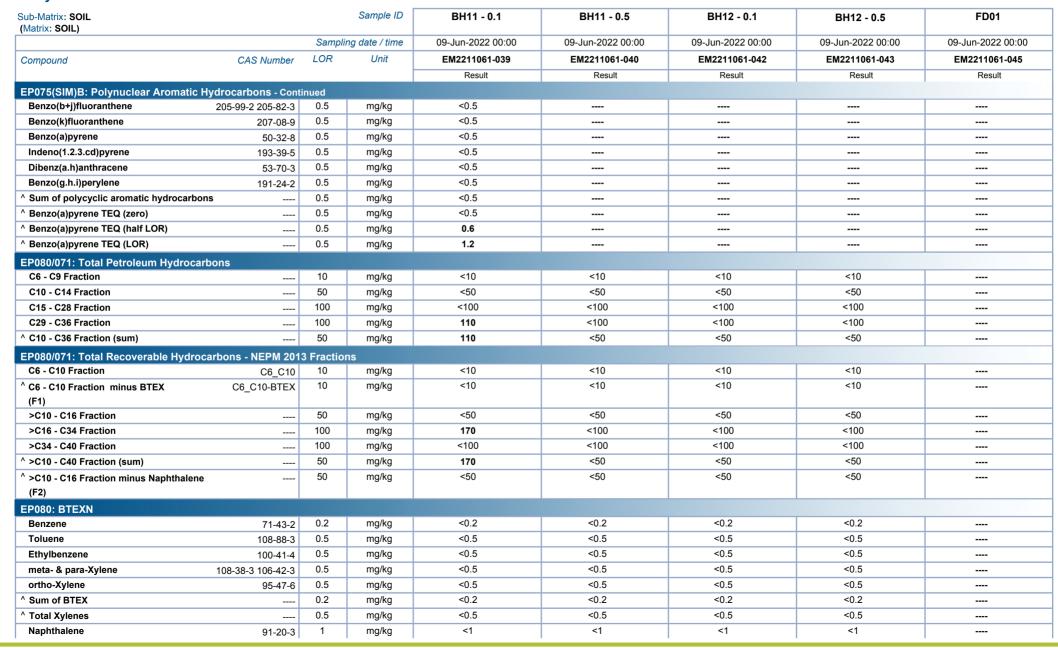
Project : 20220134



Page : 30 of 37 Work Order : EM2211061

Client : EDGE GROUP PTY LTD

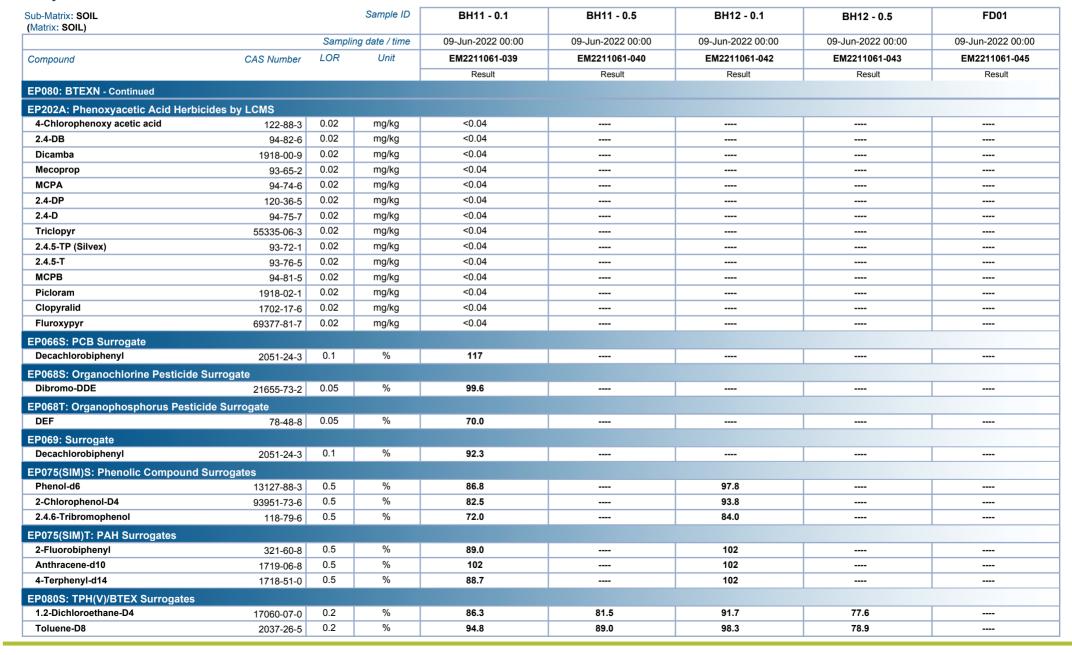
Project : 20220134



Page : 31 of 37 Work Order : EM2211061

Client : EDGE GROUP PTY LTD

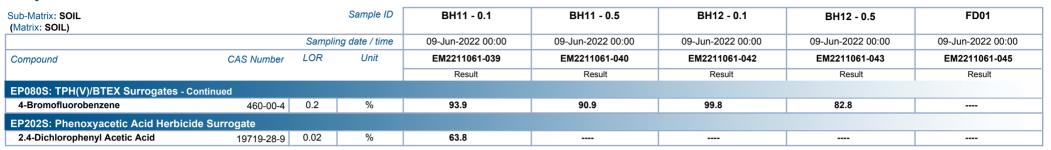
Project : 20220134



Page : 32 of 37 Work Order : EM2211061

Client : EDGE GROUP PTY LTD

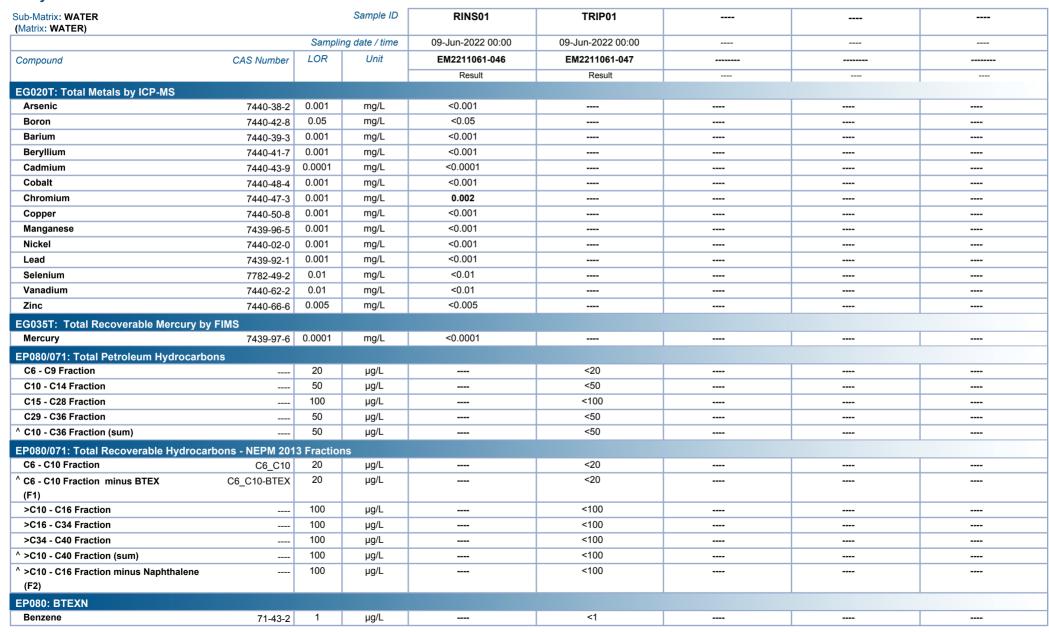
Project : 20220134



Page : 33 of 37 Work Order : EM2211061

Client : EDGE GROUP PTY LTD

Project : 20220134



Page : 34 of 37 Work Order : EM2211061

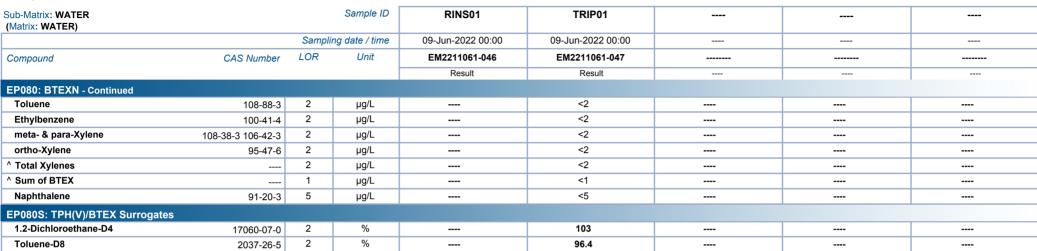
Client : EDGE GROUP PTY LTD

Project : 20220134

Page : 35 of 37 Work Order : EM2211061

Client : EDGE GROUP PTY LTD

Project : 20220134


Analytical Results

4-Bromofluorobenzene

460-00-4

2

%

99.6

Page : 36 of 37 Work Order : EM2211061

Client : EDGE GROUP PTY LTD

Project : 20220134

Surrogate Control Limits

Compound

ub-Matrix: SOIL		Recovery Limits (%		
Compound	CAS Number	Low	High	
EP066S: PCB Surrogate				
Decachlorobiphenyl	2051-24-3	41	122	
EP068S: Organochlorine Pesticide S	Surrogate			
Dibromo-DDE	21655-73-2	62	128	
EP068T: Organophosphorus Pestici	de Surrogate			
DEF	78-48-8	40	139	
EP069: Surrogate				
Decachlorobiphenyl	2051-24-3	70	130	
EP074S: VOC Surrogates (Ultra-Trac	:e)			
1.2-Dichloroethane-D4	17060-07-0	59	119	
Toluene-D8	2037-26-5	55	117	
4-Bromofluorobenzene	460-00-4	59	123	
EP075(SIM)S: Phenolic Compound S	Surrogates			
Phenol-d6	13127-88-3	54	125	
2-Chlorophenol-D4	93951-73-6	65	123	
2.4.6-Tribromophenol	118-79-6	34	122	
EP075(SIM)T: PAH Surrogates				
2-Fluorobiphenyl	321-60-8	61	125	
Anthracene-d10	1719-06-8	62	130	
4-Terphenyl-d14	1718-51-0	67	133	
EP075S: Acid Extractable Surrogate	s (Waste Classification)			
Phenol-d6	13127-88-3	63	134	
2-Chlorophenol-D4	93951-73-6	60	125	
2.4.6-Tribromophenol	118-79-6	54	129	
EP075T: Base/Neutral Extractable S	urrogates (Waste Classification	on)		
Nitrobenzene-D5	4165-60-0	63	131	
1.2-Dichlorobenzene-D4	2199-69-1	61	124	
2-Fluorobiphenyl	321-60-8	69	131	
Anthracene-d10	1719-06-8	70	133	
4-Terphenyl-d14	1718-51-0	59	141	
EP080S: TPH(V)/BTEX Surrogates				
1.2-Dichloroethane-D4	17060-07-0	51	125	
Toluene-D8	2037-26-5	55	125	
4-Bromofluorobenzene	460-00-4	56	124	
EP202S: Phenoxyacetic Acid Herbic	ide Surrogate			
2.4-Dichlorophenyl Acetic Acid	19719-28-9	45	139	
Nuls Matrice WATER		D	1::4- (0/)	
Sub-Matrix: WATER		Recovery	Limits (%)	

CAS Number

Low

High

Page : 37 of 37 Work Order : EM2211061

Client : EDGE GROUP PTY LTD

Project : 20220134

Sub-Matrix: WATER	Recovery Limits (%)			
Compound	CAS Number	Low	High	
EP080S: TPH(V)/BTEX Surrogates				
1.2-Dichloroethane-D4	17060-07-0	73	129	
Toluene-D8	2037-26-5	70	125	
4-Bromofluorobenzene	460-00-4	71	129	

Inter-Laboratory Testing

Analysis conducted by ALS Newcastle, NATA accreditation no. 825, site no. 1656 (Chemistry) 9854 (Biology).

(SOIL) EA150: Soil Classification based on Particle Size

(SOIL) EA152: Soil Particle Density

Analysis conducted by ALS Sydney, NATA accreditation no. 825, site no. 10911 (Chemistry) 14913 (Biology).

(SOIL) EP202A: Phenoxyacetic Acid Herbicides by LCMS (SOIL) EP202S: Phenoxyacetic Acid Herbicide Surrogate

QA/QC Compliance Assessment to assist with Quality Review

Work Order : **EM2211061** Page : 1 of 16

Client : EDGE GROUP PTY LTD Laboratory : Environmental Division Melbourne

 Contact
 : NATASHA DUN
 Telephone
 : +61-3-8549 9600

 Project
 : 20220134
 Date Samples Received
 : 10-Jun-2022

 Site
 : Hopetoun Park
 Issue Date
 : 24-Jun-2022

Sampler : GM and ED No. of samples received : 49
Order number : ---- No. of samples analysed : 27

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Laboratory Control outliers occur.
- Duplicate outliers exist please see following pages for full details.
- Matrix Spike outliers exist please see following pages for full details.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

• NO Analysis Holding Time Outliers exist.

Outliers: Frequency of Quality Control Samples

Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Page : 2 of 16 Work Order : EM2211061

Client : EDGE GROUP PTY LTD

Project : 20220134

Outliers : Quality Control Samples

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: SOIL

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Ouplicate (DUP) RPDs							
EG005(ED093)T: Total Metals by ICP-AES	EM2211035001	Anonymous	Lead	7439-92-1	132 %	0% - 20%	RPD exceeds LOR based limits
EG005(ED093)T: Total Metals by ICP-AES	EM2211061014	BH05 - 0.5	Manganese	7439-96-5	32.9 %	0% - 20%	RPD exceeds LOR based limits
EG005(ED093)T: Total Metals by ICP-AES	EM2211035013	Anonymous	Zinc	7440-66-6	35.1 %	0% - 20%	RPD exceeds LOR based limits
EP075B: Polynuclear Aromatic Hydrocarbons	EM2211035001	Anonymous	Acenaphthylene	208-96-8	56.8 %	0% - 20%	RPD exceeds LOR based limits
EP075B: Polynuclear Aromatic Hydrocarbons	EM2211035001	Anonymous	Fluorene	86-73-7	69.4 %	0% - 50%	RPD exceeds LOR based limits
EP075B: Polynuclear Aromatic Hydrocarbons	EM2211035001	Anonymous	Phenanthrene	85-01-8	36.7 %	0% - 20%	RPD exceeds LOR based limits
EP075B: Polynuclear Aromatic Hydrocarbons	EM2211035001	Anonymous	Anthracene	120-12-7	39.0 %	0% - 20%	RPD exceeds LOR based limits
EP075B: Polynuclear Aromatic Hydrocarbons	EM2211035001	Anonymous	Fluoranthene	206-44-0	40.1 %	0% - 20%	RPD exceeds LOR based limits
EP075B: Polynuclear Aromatic Hydrocarbons	EM2211035001	Anonymous	Pyrene	129-00-0	37.8 %	0% - 20%	RPD exceeds LOR based limits
EP075B: Polynuclear Aromatic Hydrocarbons	EM2211035001	Anonymous	Benz(a)anthracene	56-55-3	37.6 %	0% - 20%	RPD exceeds LOR based limits
EP075B: Polynuclear Aromatic Hydrocarbons	EM2211035001	Anonymous	Chrysene	218-01-9	42.0 %	0% - 20%	RPD exceeds LOR based limits
EP075B: Polynuclear Aromatic Hydrocarbons	EM2211035001	Anonymous	Benzo(b+j) &	205-99-2 207-08-9	43.6 %	0% - 20%	RPD exceeds LOR based limits
•			Benzo(k)fluoranthe				
			ne				
EP075B: Polynuclear Aromatic Hydrocarbons	EM2211035001	Anonymous	Benzo(a)pyrene	50-32-8	40.3 %	0% - 20%	RPD exceeds LOR based limits
EP075B: Polynuclear Aromatic Hydrocarbons	EM2211035001	Anonymous	Indeno(1.2.3.cd)pyrene	193-39-5	33.9 %	0% - 20%	RPD exceeds LOR based limits
EP075B: Polynuclear Aromatic Hydrocarbons	EM2211035001	Anonymous	Benzo(g.h.i)perylene	191-24-2	31.1 %	0% - 20%	RPD exceeds LOR based limits
latrix Spike (MS) Recoveries							
EP202A: Phenoxyacetic Acid Herbicides by LCMS	EM2210264004	Anonymous	Picloram	1918-02-1	39.1 %	49.0-138%	Recovery less than lower data quality
							objective
EP202A: Phenoxyacetic Acid Herbicides by LCMS	EM2210264004	Anonymous	Clopyralid	1702-17-6	20.6 %	49.0-149%	Recovery less than lower data quality
							objective

Outliers : Frequency of Quality Control Samples

Matrix: SOIL

Quality Control Sample Type	Count Rate (%) Qua		: (%)	Quality Control Specification	
Method	QC	Regular	Actual	Expected	
Laboratory Duplicates (DUP)					
Electrical Conductivity (1:5) on 40°C dried soil	0	5	0.00	10.00	NEPM 2013 B3 & ALS QC Standard
pH (1:5) on 40°C dried soil	0	5	0.00	10.00	NEPM 2013 B3 & ALS QC Standard

Matrix: WATER

Quality Control Sample Type	Count		Rate (%)		Quality Control Specification
Method	QC	Regular	Actual	Expected	
Laboratory Duplicates (DUP)					
TRH - Semivolatile Fraction	0	9	0.00	10.00	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)					
TRH - Semivolatile Fraction	0	9	0.00	5.00	NEPM 2013 B3 & ALS QC Standard

Page : 3 of 16
Work Order : EM2211061

Client : EDGE GROUP PTY LTD

Project : 20220134

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: SOIL						on: × = Holding time breach; ✓ = Within holding tir		
Method			E	traction / Preparation		Analysis		
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA001: pH in soil using 0.01M CaCl extract					ı		1	
Soil Glass Jar - Unpreserved (EA001) BH07 - 0.1, BH09 - 0.5	SP01,	09-Jun-2022	16-Jun-2022	16-Jun-2022	✓	16-Jun-2022	16-Jun-2022	✓
EA002-AD: pH (Soils) dried at 40°C								
Soil Glass Jar - Unpreserved (EA002-AD)								
BH07 - 0.1,	BH09 - 0.5	09-Jun-2022	16-Jun-2022	16-Jun-2022	✓	17-Jun-2022	17-Jun-2022	✓
EA010-AD: Conductivity (Soils) dried at 40°C								
Soil Glass Jar - Unpreserved (EA010-AD)		00 1 0000	46 1 0000	40 1 2000	,	47 1 0000	14-Jul-2022	
BH07 - 0.1,	BH09 - 0.5	09-Jun-2022	16-Jun-2022	16-Jun-2022	✓	17-Jun-2022	14-Jul-2022	✓
EA055: Moisture Content			I	l l	I		I	
Soil Glass Jar - Unpreserved (EA055) BH10 - 0.5,	BH11 - 0.5.	09-Jun-2022				15-Jun-2022	23-Jun-2022	1
BH12 - 0.1,	BH12 - 0.5							Y
EA055: Moisture Content (Dried @ 105-110°C)								
Soil Glass Jar - Unpreserved (EA055)								
BH01 - 0.1,	BH01 - 0.5,	09-Jun-2022				15-Jun-2022	23-Jun-2022	✓
BH02 - 0.1,	BH03 - 0.1,							
BH03 - 0.5,	BH04 - 0.1,							
BH05 - 0.1,	BH05 - 0.5,							
BH06 - 0.1,	BH07 - 0.1,							
SP01,	SP03,							
SP05,	SP07,							
SP09,	BH08 - 0.1,							
BH09 - 0.5,	BH09 - 0.1,							
BH10 - 0.1,	BH11 - 0.1,							
FD01								
EA150: Soil Classification based on Particle Size								
Soil Glass Jar - Unpreserved (EA150H)						00 1 0000	00 D - 0000	
BH07 - 0.1		09-Jun-2022				22-Jun-2022	06-Dec-2022	✓
EA152: Soil Particle Density			1				I	
Soil Glass Jar - Unpreserved (EA152)								

Page : 4 of 16
Work Order : EM2211061

Client : EDGE GROUP PTY LTD

Matrix: SOIL					Evaluation	n: × = Holding time	breach ; ✓ = With	in holding time.
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
ED006: Exchangeable Cations on Alkaline Soils								
Soil Glass Jar - Unpreserved (ED006)								
BH07 - 0.1,	BH09 - 0.5	09-Jun-2022	20-Jun-2022	07-Jul-2022	✓	20-Jun-2022	07-Jul-2022	✓
ED007: Exchangeable Cations								
Soil Glass Jar - Unpreserved (ED007)								
BH07 - 0.1,	BH09 - 0.5	09-Jun-2022	16-Jun-2022	07-Jul-2022	✓	20-Jun-2022	07-Jul-2022	✓
ED008: Exchangeable Cations								
Soil Glass Jar - Unpreserved (ED008)				07.1.10000			07.1.0000	
BH07 - 0.1,	BH09 - 0.5	09-Jun-2022	16-Jun-2022	07-Jul-2022	✓	20-Jun-2022	07-Jul-2022	✓
EG005(ED093)T: Total Metals by ICP-AES								
Soil Glass Jar - Unpreserved (EG005T)	DUO.4 O.5	00 1 0000	47 1 0000	00 Day 2000		47 1 0000	00 Dan 2000	
BH01 - 0.1,	BH01 - 0.5,	09-Jun-2022	17-Jun-2022	06-Dec-2022	✓	17-Jun-2022	06-Dec-2022	✓
BH02 - 0.1,	BH03 - 0.1,							
BH03 - 0.5,	BH04 - 0.1,							
BH05 - 0.1,	BH05 - 0.5,							
BH06 - 0.1,	BH07 - 0.1,							
SP01,	SP03,							
SP05,	SP07,							
SP09,	BH08 - 0.1,							
BH09 - 0.5,	BH09 - 0.1,							
BH10 - 0.1,	BH10 - 0.5,							
BH11 - 0.1,	BH11 - 0.5,							
BH12 - 0.1,	FD01, BH12 - 0.5							
EG035T: Total Recoverable Mercury by FIMS								
Soil Glass Jar - Unpreserved (EG035T)								
BH01 - 0.1,	BH01 - 0.5,	09-Jun-2022	17-Jun-2022	07-Jul-2022	✓	17-Jun-2022	07-Jul-2022	✓
BH02 - 0.1,	BH03 - 0.1,							
BH03 - 0.5,	BH04 - 0.1,							
BH05 - 0.1,	BH05 - 0.5,							
BH06 - 0.1,	BH07 - 0.1,							
SP01,	SP03,							
SP05,	SP07,							
SP09,	BH08 - 0.1,							
BH09 - 0.5,	BH09 - 0.1,							
BH10 - 0.1,	BH10 - 0.5,							
BH11 - 0.1,	BH11 - 0.5,							
BH12 - 0.1,	FD01, BH12 - 0.5							
EG048: Hexavalent Chromium (Alkaline Digest)								
Soil Glass Jar - Unpreserved (EG048G)								
BH01 - 0.1,	BH07 - 0.1,	09-Jun-2022	16-Jun-2022	07-Jul-2022	✓	17-Jun-2022	23-Jun-2022	✓
SP01,	BH09 - 0.1,							
BH11 - 0.1								

Page : 5 of 16 Work Order : EM2211061

Client : EDGE GROUP PTY LTD

Matrix: SOIL						Evaluation	: x = Holding time	breach ; ✓ = Withi	n holding time.
Method			Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)				Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EK026SF: Total CN by Segmented Flow Analyser									
Soil Glass Jar - Unpreserved (EK026SF)									
SP01			09-Jun-2022	16-Jun-2022	23-Jun-2022	✓	17-Jun-2022	30-Jun-2022	✓
EK028SF: Weak Acid Dissociable CN by Segment	ted Flow Analyser								
Soil Glass Jar - Unpreserved (EK028SF)									
BH01 - 0.1,	BH07 - 0.1,		09-Jun-2022	16-Jun-2022	23-Jun-2022	✓	17-Jun-2022	30-Jun-2022	✓
BH09 - 0.1,	BH11 - 0.1								
EK040T: Fluoride Total									
Soil Glass Jar - Unpreserved (EK040T)					07.1.10000			07.1.10000	
SP01			09-Jun-2022	16-Jun-2022	07-Jul-2022	√	20-Jun-2022	07-Jul-2022	✓
EP004: Organic Matter									
Soil Glass Jar - Unpreserved (EP004)			00.1	47.1	07 1 1 0000	,	47.1	07 1 1 0000	
BH07 - 0.1,	BH09 - 0.5		09-Jun-2022	17-Jun-2022	07-Jul-2022	√	17-Jun-2022	07-Jul-2022	✓
EP066: Polychlorinated Biphenyls (PCB)									
Soil Glass Jar - Unpreserved (EP066)			00.1	40.1	00 1 0000		40.1000	00 Int 0000	
BH01 - 0.1,	BH07 - 0.1,		09-Jun-2022	16-Jun-2022	23-Jun-2022	✓	16-Jun-2022	26-Jul-2022	✓
SP01,	BH09 - 0.1,								
BH11 - 0.1									
EP068A: Organochlorine Pesticides (OC)					ı				
Soil Glass Jar - Unpreserved (EP068)	DI 107 0 4		09-Jun-2022	16-Jun-2022	23-Jun-2022	1	16-Jun-2022	26-Jul-2022	
BH01 - 0.1, BH09 - 0.1.	BH07 - 0.1,		09-Juli-2022	16-3011-2022	25-Juli-2022	•	10-3011-2022	20-301-2022	✓
BH11 - 0.1	BH10 - 0.1,								
EP068B: Organophosphorus Pesticides (OP)									
Soil Glass Jar - Unpreserved (EP068) BH01 - 0.1,	BH07 - 0.1,		09-Jun-2022	16-Jun-2022	23-Jun-2022	1	16-Jun-2022	26-Jul-2022	
BH09 - 0.1,	BH10 - 0.1,		00 0an 2022	10 0411 2022	20 0011 2022	•	10 0411 2022	20 00. 2022	
BH11 - 0.1	51110 0.1,								
EP068C: Triazines Soil Glass Jar - Unpreserved (EP068)									
BH01 - 0.1,	BH07 - 0.1,		09-Jun-2022	16-Jun-2022	23-Jun-2022	✓	16-Jun-2022	26-Jul-2022	✓
BH09 - 0.1,	BH11 - 0.1					_			· •
EP068D: Pyrethroids									
Soil Glass Jar - Unpreserved (EP068)									
BH01 - 0.1,	BH07 - 0.1,		09-Jun-2022	16-Jun-2022	23-Jun-2022	1	16-Jun-2022	26-Jul-2022	
BH09 - 0.1,	BH11 - 0.1								
EP069: Toxaphene									-
Soil Glass Jar - Unpreserved (EP069)		I							
BH01 - 0.1,	BH07 - 0.1,		09-Jun-2022	16-Jun-2022	23-Jun-2022	✓	16-Jun-2022	26-Jul-2022	✓
BH09 - 0.1,	BH11 - 0.1								·
					-		•		

Page : 6 of 16 Work Order : EM2211061

Client : EDGE GROUP PTY LTD

Matrix: SOIL					Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time.
Method		Sample Date	Ex	traction / Preparation		Analysis		
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP074A: Monocyclic Aromatic Hydrocarbons								
Soil Glass Jar - Unpreserved (EP074-UT)								
SP01		09-Jun-2022	15-Jun-2022	16-Jun-2022	√	16-Jun-2022	16-Jun-2022	✓
EP074H: Naphthalene								
Soil Glass Jar - Unpreserved (EP074-UT)		00 1 2022	45 lum 2022	16-Jun-2022	,	46 1 2022	16-Jun-2022	
SP01		09-Jun-2022	15-Jun-2022	10-3011-2022	√	16-Jun-2022	10-3011-2022	✓
EP074I: Volatile Halogenated Compounds								
Soil Glass Jar - Unpreserved (EP074-UT) SP01		09-Jun-2022	15-Jun-2022	16-Jun-2022	1	16-Jun-2022	16-Jun-2022	✓
EP075(SIM)A: Phenolic Compounds					<u> </u>			_
Soil Glass Jar - Unpreserved (EP075(SIM))]					
BH01 - 0.1,	BH07 - 0.1,	09-Jun-2022	16-Jun-2022	23-Jun-2022	✓	16-Jun-2022	26-Jul-2022	✓
BH09 - 0.1,	BH11 - 0.1,							
BH12 - 0.1								
Soil Glass Jar - Unpreserved (EP075(SIM))		00.1000	40.1	00 1 0000	,	47 1	00 1.1 0000	
BH09 - 0.5		09-Jun-2022	16-Jun-2022	23-Jun-2022	✓	17-Jun-2022	26-Jul-2022	✓
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons			l			ı		
Soil Glass Jar - Unpreserved (EP075(SIM)) BH01 - 0.1,	BH02 - 0.1,	09-Jun-2022	16-Jun-2022	23-Jun-2022	✓	16-Jun-2022	26-Jul-2022	
BH03 - 0.1,	BH04 - 0.1,	00 0411 2022	10 0411 2022	20 00 2022	•	10 0411 2022	20 00: 2022	,
BH05 - 0.1,	BH06 - 0.1,							
BH07 - 0.1,	SP05,							
SP09,	BH08 - 0.1,							
BH09 - 0.1,	BH10 - 0.1,							
BH11 - 0.1								
Soil Glass Jar - Unpreserved (EP075(SIM))	DU00 0 5	09-Jun-2022	16-Jun-2022	23-Jun-2022	,	17-Jun-2022	26-Jul-2022	
SP07,	BH09 - 0.5	09-Jun-2022	16-Jun-2022	23-3011-2022	√	17-Jun-2022	20-Jul-2022	√
EP075A: Phenolic Compounds (Halogenated)			l					
Soil Glass Jar - Unpreserved (EP075-EM) SP01		09-Jun-2022	16-Jun-2022	23-Jun-2022	1	16-Jun-2022	26-Jul-2022	
EP075A: Phenolic Compounds (Non-halogenated)			100000000000000000000000000000000000000					_
Soil Glass Jar - Unpreserved (EP075-EM)]					
SP01		09-Jun-2022	16-Jun-2022	23-Jun-2022	✓	16-Jun-2022	26-Jul-2022	
EP075B: Polynuclear Aromatic Hydrocarbons								
Soil Glass Jar - Unpreserved (EP075-EM)								
SP01		09-Jun-2022	16-Jun-2022	23-Jun-2022	✓	16-Jun-2022	26-Jul-2022	✓
EP075I: Organochlorine Pesticides								
Soil Glass Jar - Unpreserved (EP075-EM)								
SP01		09-Jun-2022	16-Jun-2022	23-Jun-2022	<u> </u>	16-Jun-2022	26-Jul-2022	✓

Page : 7 of 16
Work Order : EM2211061

Client : EDGE GROUP PTY LTD

Project : 20220134

SP07

17-Jun-2022

26-Jul-2022

Method		Sample Date	E	traction / Preparation		Analysis		
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP080/071: Total Petroleum Hydrocarbo	ons							
Soil Glass Jar - Unpreserved (EP074-UT)								
SP01		09-Jun-2022	15-Jun-2022	16-Jun-2022	✓	16-Jun-2022	16-Jun-2022	✓
Soil Glass Jar - Unpreserved (EP080)								
BH01 - 0.1,	BH02 - 0.1,	09-Jun-2022	15-Jun-2022	23-Jun-2022	✓	17-Jun-2022	23-Jun-2022	✓
BH03 - 0.1,	BH04 - 0.1,							
BH05 - 0.1,	BH06 - 0.1,							
BH07 - 0.1,	SP05,							
SP09,	BH08 - 0.1,							
BH09 - 0.5,	BH09 - 0.1,							
BH10 - 0.1,	BH10 - 0.5,							
BH11 - 0.1,	BH11 - 0.5,							
BH12 - 0.1,	BH12 - 0.5							
Soil Glass Jar - Unpreserved (EP071)								
BH01 - 0.1,	BH02 - 0.1,	09-Jun-2022	16-Jun-2022	23-Jun-2022	✓	16-Jun-2022	26-Jul-2022	✓
BH03 - 0.1,	BH04 - 0.1,							
BH05 - 0.1,	BH06 - 0.1,							
BH07 - 0.1,	SP01,							
SP05,	SP07,							
SP09,	BH08 - 0.1,							
BH09 - 0.5,	BH09 - 0.1,							
BH10 - 0.1,	BH10 - 0.5,							
BH11 - 0.1,	BH11 - 0.5,							
BH12 - 0.1,	BH12 - 0.5							
Soil Glass Jar - Unpreserved (EP071)								

09-Jun-2022

16-Jun-2022

23-Jun-2022

Page : 8 of 16 Work Order : EM2211061

Client : EDGE GROUP PTY LTD

Matrix: SOIL					Evaluation	n: × = Holding time	breach ; ✓ = With	in holding time
Method		Sample Date	E	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP080/071: Total Recoverable Hydr	ocarbons - NEPM 2013 Fractions							
Soil Glass Jar - Unpreserved (EP074 SP01	-UT)	09-Jun-2022	15-Jun-2022	16-Jun-2022	1	16-Jun-2022	16-Jun-2022	✓
Soil Glass Jar - Unpreserved (EP080								
BH01 - 0.1,	BH02 - 0.1,	09-Jun-2022	15-Jun-2022	23-Jun-2022	✓	17-Jun-2022	23-Jun-2022	✓
BH03 - 0.1,	BH04 - 0.1,							
BH05 - 0.1,	BH06 - 0.1,							
BH07 - 0.1,	SP05,							
SP09,	BH08 - 0.1,							
BH09 - 0.5,	BH09 - 0.1,							
BH10 - 0.1,	BH10 - 0.5,							
BH11 - 0.1,	BH11 - 0.5,							
BH12 - 0.1,	BH12 - 0.5							
Soil Glass Jar - Unpreserved (EP071								
BH01 - 0.1,	BH02 - 0.1,	09-Jun-2022	16-Jun-2022	23-Jun-2022	✓	16-Jun-2022	26-Jul-2022	1
BH03 - 0.1,	BH04 - 0.1,							
BH05 - 0.1,	BH06 - 0.1,							
BH07 - 0.1,	SP01,							
SP05,	SP07,							
SP09,	BH08 - 0.1,							
BH09 - 0.5,	BH09 - 0.1,							
BH10 - 0.1,	BH10 - 0.5,							
BH11 - 0.1,	BH11 - 0.5,							
BH12 - 0.1,	BH12 - 0.5							
Soil Glass Jar - Unpreserved (EP071								
SP07	1	09-Jun-2022	16-Jun-2022	23-Jun-2022	✓	17-Jun-2022	26-Jul-2022	1
EP080: BTEXN								
Soil Glass Jar - Unpreserved (EP080								
BH01 - 0.1,	BH02 - 0.1,	09-Jun-2022	15-Jun-2022	23-Jun-2022	✓	17-Jun-2022	23-Jun-2022	✓
BH03 - 0.1,	BH04 - 0.1,							
BH05 - 0.1,	BH06 - 0.1,							
BH07 - 0.1,	SP05,							
SP09,	BH08 - 0.1,							
BH09 - 0.5,	BH09 - 0.1,							
BH10 - 0.1,	BH10 - 0.5,							
BH11 - 0.1,	BH11 - 0.5,							
BH12 - 0.1,	BH12 - 0.5							
Soil Glass Jar - Unpreserved (EP080		00.1 2222	40 1 0000	22 Jun 2022		40 1 0000	22 Jun 2022	
SP07		09-Jun-2022	16-Jun-2022	23-Jun-2022	✓	16-Jun-2022	23-Jun-2022	✓

Page : 9 of 16 Work Order : EM2211061

Client : EDGE GROUP PTY LTD

Matrix: SOIL					Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP202A: Phenoxyacetic Acid Herbicides by LCMS								
Soil Glass Jar - Unpreserved (EP202)					_			_
BH09 - 0.1,	BH11 - 0.1	09-Jun-2022	17-Jun-2022	23-Jun-2022	✓	17-Jun-2022	27-Jul-2022	✓
Soil Glass Jar - Unpreserved (EP202)	DUOT 0.4	00 1 0000	00 1 0000	00 1 0000		00 1 0000	04 4 2000	
BH01 - 0.1,	BH07 - 0.1	09-Jun-2022	22-Jun-2022	23-Jun-2022	✓	23-Jun-2022	01-Aug-2022	✓
Matrix: WATER					Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EG020T: Total Metals by ICP-MS								
Clear Plastic Bottle - Nitric Acid; Unfiltered (EG020A-T)								
RINS01		09-Jun-2022	14-Jun-2022	06-Dec-2022	✓	14-Jun-2022	06-Dec-2022	✓
EG035T: Total Recoverable Mercury by FIMS								
Clear Plastic Bottle - Nitric Acid; Unfiltered (EG035T)								
RINS01		09-Jun-2022				14-Jun-2022	07-Jul-2022	✓
EP080/071: Total Petroleum Hydrocarbons								
Amber Glass Bottle - Unpreserved (EP071)								
TRIP01		09-Jun-2022	14-Jun-2022	16-Jun-2022	✓	14-Jun-2022	24-Jul-2022	✓
Amber VOC Vial - Sulfuric Acid (EP080)				00 1 0000			00 1 0000	
TRIP01		09-Jun-2022	14-Jun-2022	23-Jun-2022	✓	14-Jun-2022	23-Jun-2022	✓
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013	Fractions							
Amber Glass Bottle - Unpreserved (EP071)								
TRIP01		09-Jun-2022	14-Jun-2022	16-Jun-2022	✓	14-Jun-2022	24-Jul-2022	✓
Amber VOC Vial - Sulfuric Acid (EP080)		00 1 0000	44 1 0000	22 lun 2022		44 1 0000	22 Jun 2022	
TRIP01		09-Jun-2022	14-Jun-2022	23-Jun-2022	✓	14-Jun-2022	23-Jun-2022	✓
EP080: BTEXN								
Amber VOC Vial - Sulfuric Acid (EP080)			44.1	00 1 0000		44.10000	00 1 0000	
TRIP01		09-Jun-2022	14-Jun-2022	23-Jun-2022	✓	14-Jun-2022	23-Jun-2022	✓

Page : 10 of 16 Work Order EM2211061

Client EDGE GROUP PTY LTD

20220134 Project

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: SOIL				Evaluatio	n: × = Quality Co	ntrol frequency	not within specification ; ✓ = Quality Control frequency within specificatio
Quality Control Sample Type		Co	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	OC	Regular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Electrical Conductivity (1:5) on 40°C dried soil	EA010-AD	0	5	0.00	10.00	3c	NEPM 2013 B3 & ALS QC Standard
Exchangeable Cations on Alkaline Soils	ED006	1	4	25.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Hexavalent Chromium by Alkaline Digestion and DA Finish	EG048G	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Moisture Content	EA055	4	40	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Organic Matter	EP004	2	10	20.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (SIM)	EP075(SIM)	3	17	17.65	10.00	✓	NEPM 2013 B3 & ALS QC Standard
PCB - VIC EPA 448.3 Screen	EP066-EM	2	11	18.18	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Pesticides by GCMS	EP068	1	5	20.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
pH (1:5) on 40°C dried soil	EA002-AD	0	5	0.00	10.00	æ	NEPM 2013 B3 & ALS QC Standard
pH in soil using a 0.01M CaCl2 extract	EA001	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Phenoxyacetic Acid Herbicides (LCMS - Standard DL)	EP202	1	6	16.67	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Polychlorinated Biphenyls (PCB)	EP066	1	4	25.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Semivolatile Organic Compounds - Waste Classification	EP075-EM	3	11	27.27	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Cyanide by Segmented Flow Analyser	EK026SF	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Fluoride	EK040T	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	4	40	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	7	40	17.50	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Toxaphene by GCMS	EP069	1	4	25.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	3	19	15.79	10.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071-EM	2	11	18.18	10.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	3	22	13.64	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Volatile Organic Compounds - Ultra-trace	EP074-UT	1	10	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
WAD Cyanide by Segmented Flow Analyser	EK028SF	1	4	25.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
Electrical Conductivity (1:5) on 40°C dried soil	EA010-AD	1	5	20.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Exchangeable Cations on Alkaline Soils	ED006	1	4	25.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Hexavalent Chromium by Alkaline Digestion and DA Finish	EG048G	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Organic Matter	EP004	1	10	10.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (SIM)	EP075(SIM)	2	17	11.76	5.00	✓	NEPM 2013 B3 & ALS QC Standard
PCB - VIC EPA 448.3 Screen	EP066-EM	1	11	9.09	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Pesticides by GCMS	EP068	1	5	20.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
pH (1:5) on 40°C dried soil	EA002-AD	2	5	40.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
pH in soil using a 0.01M CaCl2 extract	EA001	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Phenoxyacetic Acid Herbicides (LCMS - Standard DL)	EP202	2	6	33.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Polychlorinated Biphenyls (PCB)	EP066	1	4	25.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Semivolatile Organic Compounds - Waste Classification	EP075-EM	1	11	9.09	5.00	✓	NEPM 2013 B3 & ALS QC Standard

Page : 11 of 16
Work Order : EM2211061

Client : EDGE GROUP PTY LTD

Matrix: SOIL		Evaluation: × = Quality Control frequency not within specification; ✓ = Quality Control frequency within spe						
Quality Control Sample Type		Co	ount		Rate (%)		Quality Control Specification	
Analytical Methods	Method	QC	Regular	Actual	Expected	Evaluation		
Laboratory Control Samples (LCS) - Continued								
Total Cyanide by Segmented Flow Analyser	EK026SF	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Fluoride	EK040T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Mercury by FIMS	EG035T	2	40	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Metals by ICP-AES	EG005T	2	40	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Toxaphene by GCMS	EP069	1	4	25.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
TRH - Semivolatile Fraction	EP071	2	19	10.53	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
TRH - Semivolatile Fraction	EP071-EM	1	11	9.09	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
TRH Volatiles/BTEX	EP080	2	22	9.09	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Volatile Organic Compounds - Ultra-trace	EP074-UT	1	10	10.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
WAD Cyanide by Segmented Flow Analyser	EK028SF	1	4	25.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Method Blanks (MB)								
Electrical Conductivity (1:5) on 40°C dried soil	EA010-AD	1	5	20.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Exchangeable Cations on Alkaline Soils	ED006	1	4	25.00	5.00	√	NEPM 2013 B3 & ALS QC Standard	
Hexavalent Chromium by Alkaline Digestion and DA Finish	EG048G	1	20	5.00	5.00	<u>√</u>	NEPM 2013 B3 & ALS QC Standard	
Organic Matter	EP004	1	10	10.00	5.00	<u>√</u>	NEPM 2013 B3 & ALS QC Standard	
PAH/Phenols (SIM)	EP075(SIM)	2	17	11.76	5.00	<u> </u>	NEPM 2013 B3 & ALS QC Standard	
PCB - VIC EPA 448.3 Screen	EP066-EM	1	11	9.09	5.00	<u>√</u>	NEPM 2013 B3 & ALS QC Standard	
Pesticides by GCMS	EP068	1	5	20.00	5.00	<u>√</u>	NEPM 2013 B3 & ALS QC Standard	
Phenoxyacetic Acid Herbicides (LCMS - Standard DL)	EP202	2	6	33.33	5.00	√	NEPM 2013 B3 & ALS QC Standard	
Polychlorinated Biphenyls (PCB)	EP066	1	4	25.00	5.00	<u>√</u>	NEPM 2013 B3 & ALS QC Standard	
Semivolatile Organic Compounds - Waste Classification	EP075-EM	1	11	9.09	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Cyanide by Segmented Flow Analyser	EK026SF	1	20	5.00	5.00	√	NEPM 2013 B3 & ALS QC Standard	
Total Fluoride	EK040T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Mercury by FIMS	EG035T	2	40	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Metals by ICP-AES	EG005T	2	40	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Toxaphene by GCMS	EP069	1	4	25.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
TRH - Semivolatile Fraction	EP071	2	19	10.53	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
TRH - Semivolatile Fraction	EP071-EM	1	11	9.09	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
TRH Volatiles/BTEX	EP080	2	22	9.09	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Volatile Organic Compounds - Ultra-trace	EP074-UT	1	10	10.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
WAD Cyanide by Segmented Flow Analyser	EK028SF	1	4	25.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Matrix Spikes (MS)								
Hexavalent Chromium by Alkaline Digestion and DA Finish	EG048G	2	20	10.00	10.00	√	NEPM 2013 B3 & ALS QC Standard	
Organic Matter	EP004	1	10	10.00	5.00	<u>√</u>	NEPM 2013 B3 & ALS QC Standard	
PAH/Phenols (SIM)	EP075(SIM)	2	17	11.76	5.00	<u>√</u>	NEPM 2013 B3 & ALS QC Standard	
PCB - VIC EPA 448.3 Screen	EP066-EM	1	11	9.09	5.00	√	NEPM 2013 B3 & ALS QC Standard	
Pesticides by GCMS	EP068	1	5	20.00	5.00	<u>√</u>	NEPM 2013 B3 & ALS QC Standard	
Phenoxyacetic Acid Herbicides (LCMS - Standard DL)	EP202	1	6	16.67	5.00	√	NEPM 2013 B3 & ALS QC Standard	
Polychlorinated Biphenyls (PCB)	EP066	1	4	25.00	5.00	<u>√</u>	NEPM 2013 B3 & ALS QC Standard	
Semivolatile Organic Compounds - Waste Classification	EP075-EM	1	11	9.09	5.00	✓	NEPM 2013 B3 & ALS QC Standard	

Page : 12 of 16 EM2211061 Work Order

EDGE GROUP PTY LTD Client

Project : 20220134							(AL
Matrix: SOIL				Evaluatio	n: × = Quality Co	ontrol frequency	not within specification; ✓ = Quality Control frequency within specifica
Quality Control Sample Type		Co	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Regular	Actual	Expected	Evaluation	
Matrix Spikes (MS) - Continued							
Total Cyanide by Segmented Flow Analyser	EK026SF	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Fluoride	EK040T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	2	40	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	2	40	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Toxaphene by GCMS	EP069	1	4	25.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071-EM	1	11	9.09	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	2	22	9.09	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Volatile Organic Compounds - Ultra-trace	EP074-UT	1	10	10.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
WAD Cyanide by Segmented Flow Analyser	EK028SF	1	4	25.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix: WATER				Evaluatio	n: × = Quality Co	ontrol frequency	not within specification; ✓ = Quality Control frequency within specification
Quality Control Sample Type		Co	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Regular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Total Mercury by FIMS	EG035T	2	18	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	2	16	12.50	10.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	0	9	0.00	10.00	×	NEPM 2013 B3 & ALS QC Standard
TDUNCT (DTEX)				10.00	10.00		NEDIA COLO DO O ALIO CO CILILIA

Quality Control Sample Type		Co	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	OC	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Total Mercury by FIMS	EG035T	2	18	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	2	16	12.50	10.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	0	9	0.00	10.00	x	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
Total Mercury by FIMS	EG035T	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	1	16	6.25	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	9	11.11	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
Total Mercury by FIMS	EG035T	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	1	16	6.25	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	9	11.11	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
Total Mercury by FIMS	EG035T	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	1	16	6.25	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	0	9	0.00	5.00	3 £	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard

Page : 13 of 16 Work Order : EM2211061

Client : EDGE GROUP PTY LTD

Project : 20220134

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
pH in soil using a 0.01M CaCl2 extract	EA001	SOIL	In house: Referenced to Rayment and Lyons 4B3 (mod.) or 4B4 (mod.) 10 g of soil is mixed with 50 mL of 0.01M CaCl2 and tumbled end over end for 1 hour. pH is measured from the continuous suspension. This method is compliant with NEPM Schedule B(3).
pH (1:5) on 40°C dried soil	EA002-AD	SOIL	In house: Referenced to Rayment and Lyons 4A1 and APHA 4500H+. pH is determined on 40°C dried soil after a 1:5 soil/water leach. This method is compliant with NEPM Schedule B(3)
Electrical Conductivity (1:5) on 40°C dried soil	EA010-AD	SOIL	In house: Referenced to Rayment and Lyons 3A1 and APHA 2510. Conductivity is determined on soil samples dried at 40°C using a 1:5 soil/water leach. This method is compliant with NEPM Schedule B(3).
Moisture Content	EA055	SOIL	In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 105-110 degrees C. This method is compliant with NEPM Schedule B(3).
Particle Size Analysis by Hydrometer	EA150H	SOIL	Particle Size Analysis by Hydrometer according to AS1289.3.6.3
Soil Particle Density	EA152	SOIL	Soil Particle Density by AS 1289.3.5.1: Methods of testing soils for engineering purposes - Soil classification tests - Determination of the soil particle density of a soil - Standard method
Exchangeable Cations on Alkaline Soils	* ED006	SOIL	In house: Referenced to Soil Survey Test Method C5. Soluble salts are removed from the sample prior to analysis. Cations are exchanged from the sample by contact with alcoholic ammonium chloride at pH 8.5. They are then quantitated in the final solution by ICPAES and reported as meq/100g of original soil.
Exchangeable Cations	ED007	SOIL	In house: Referenced to Rayment & Lyons Method 15A1. Cations are exchanged from the sample by contact with Ammonium Chloride. They are then quantitated in the final solution by ICPAES and reported as meq/100g of original soil. This method is compliant with NEPM Schedule B(3).
Exchangeable Cations with pre-treatment	ED008	SOIL	In house: Referenced to Rayment & Lyons Method 15A2. Soluble salts are removed from the sample prior to analysis. Cations are exchanged from the sample by contact with Ammonium Chloride. They are then quantitated in the final solution by ICPAES and reported as meq/100g of original soil. This method is compliant with NEPM Schedule B(3).
Total Metals by ICP-AES	EG005T	SOIL	In house: Referenced to APHA 3120; USEPA SW 846 - 6010. Metals are determined following an appropriate acid digestion of the soil. The ICPAES technique ionises samples in a plasma, emitting a characteristic spectrum based on metals present. Intensities at selected wavelengths are compared against those of matrix matched standards. This method is compliant with NEPM Schedule B(3)
Total Mercury by FIMS	EG035T	SOIL	In house: Referenced to APHA 3112 Hg - B (Flow-injection (SnCl2) (Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. Mercury in solids are determined following an appropriate acid digestion. Ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM Schedule B(3)
Hexavalent Chromium by Alkaline Digestion and DA Finish	EG048G	SOIL	In house: Referenced to USEPA SW846, Method 3060. Hexavalent chromium is extracted by alkaline digestion. The digest is determined by photometrically by automatic discrete analyser, following pH adjustment. The instrument uses colour development using dephenylcarbazide. Each run of samples is measured against a five-point calibration curve. This method is compliant with NEPM Schedule B(3)

Page : 14 of 16 Work Order : EM2211061

Client : EDGE GROUP PTY LTD

Analytical Methods	Method	Matrix	Method Descriptions
Total Cyanide by Segmented Flow Analyser	EK026SF	SOIL	In house: Referenced to APHA 4500-CN C / ASTM D7511 / ISO 14403. Caustic leachates of soil samples are introduced into an automated segmented flow analyser. Complex bound cyanide is decomposed in a continuously flowing stream, at a pH of 3.8, by the effect of UV light. A UV-B lamp (312 nm) and a decomposition spiral of borosilicate glass are used to filter out UV light with a wavelength of less than 290 nm thus preventing the conversion of thiocyanate into cyanide. The hydrogen cyanide present at a pH of 3.8 is separated by gas dialysis. The hydrogen cyanide is then determined photometrically, based on the reaction of cyanide with chloramine-T to form cyanogen chloride. This then reacts with 4-pyridine carboxylic acid and 1,3-dimethylbarbituric acid to give a red colour which is measured at 600 nm. This method is compliant with NEPM Schedule B(3).
WAD Cyanide by Segmented Flow Analyser	EK028SF	SOIL	In house: Referenced to APHA 4500-CN C&O / ISO 14403. Caustic leachates of soil samples are introduced into an automated segmented flow analyser. Hydrogen cyanide is liberated from a slightly acidified (pH 4.5) and is dialysed. Tight cyanide complexes that would not be amenable to oxidation by chlorine are not converted. Iron cyanide complexes are precipitated with zinc acetate. Liberated HCN diffuses through a membrane into a stream of sodium hydroxide where it is carried as CN- The cyanide in caustic solution is buffered to pH 5.2 and further converted to cyanogen chloride by reaction with chloramine-T. Cyanogen chloride subsequently reacts with 4 ¿pyridine carboxylic and 1,3 - dimethylbarbituric acids to give a red colour complex. This colour is measured at 600 nm. This method is compliant with NEPM Schedule B(3).
Total Fluoride	EK040T	SOIL	(In-house) Total fluoride is determined by ion specific electrode (ISE) in a solution obtained after a Sodium Carbonate / Potassium Carbonate fusion dissolution.
Organic Matter	EP004	SOIL	In house: Referenced to AS1289.4.1.1. Dichromate oxidation method after Walkley and Black. This method is compliant with NEPM Schedule B(3)
Polychlorinated Biphenyls (PCB)	EP066	SOIL	In house: Referenced to USEPA SW 846 - 8270 Extracts are analysed by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM Schedule B(3).
PCB - VIC EPA 448.3 Screen	EP066-EM	SOIL	In house: Referenced to USEPA SW 846 - 8270 Extracts are analysed by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM Schedule B(3).
Pesticides by GCMS	EP068	SOIL	In house: Referenced to USEPA SW 846 - 8270 Extracts are analysed by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This technique is compliant with NEPM Schedule B(3).
Toxaphene by GCMS	EP069	SOIL	In house: Referenced to USEPA 8276. Extracts are analysed by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This technique is compliant with NEPM Schedule B(3).
TRH - Semivolatile Fraction	EP071	SOIL	In house: Referenced to USEPA SW 846 - 8015 Sample extracts are analysed by Capillary GC/FID and quantified against alkane standards over the range C10 - C40. Compliant with NEPM Schedule B(3).
TRH - Semivolatile Fraction	EP071-EM	SOIL	In house: Referenced to USEPA SW 846 - 8015A Sample extracts are analysed by Capillary GC/FID and quantified against alkane standards over the range C10 - C40.
Volatile Organic Compounds - Ultra-trace	EP074-UT	SOIL	In house: Referenced to USEPA SW 846 - 8260 Extracts are analysed by Purge and Trap, Capillary GC/MS in partial SIM/Scan mode. Quantification is by comparison against an established multi-point calibration curves. This method is compliant with NEPM Schedule B(3).

Page : 15 of 16 Work Order : EM2211061

Client : EDGE GROUP PTY LTD

Analytical Methods	Method	Matrix	Method Descriptions
Volatile Organic Compounds - Ultra-trace - Summations	EP074-UT-SUM	SOIL	Summation of MAHs and VHCs
PAH/Phenols (SIM)	EP075(SIM)	SOIL	In house: Referenced to USEPA SW 846 - 8270. Extracts are analysed by Capillary GC/MS in Selective Ion Mode (SIM) and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM Schedule B(3)
Semivolatile Organic Compounds - Waste Classification	EP075-EM	SOIL	In house: Referenced to USEPA SW 846 - 8270 Extracts are analysed by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This technique is compliant with NEPM Schedule B(3).
SVOC - Waste Classification (Sums)	EP075-EM-SUM	SOIL	Summations for EP075 (EM variation)
TRH Volatiles/BTEX	EP080	SOIL	In house: Referenced to USEPA SW 846 - 8260. Extracts are analysed by Purge and Trap, Capillary GC/MS. Quantification is by comparison against an established 5 point calibration curve. Compliant with NEPM Schedule B(3) amended.
Phenoxyacetic Acid Herbicides (LCMS - Standard DL)	EP202	SOIL	In house: LCMS (Electrospray in negative mode). Residues of acid herbicides are extracted from soil samples under the alkaline condition. An aliquot of the alkaline aqueous phase is taken and acidified before a SPE cleanup. After eluting off from the SPE cartridge, residues of acid herbicides are dissolved in HPLC mobile phase prior to instrument analysis.
Total Metals by ICP-MS - Suite A	EG020A-T	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Total Mercury by FIMS	EG035T	WATER	In house: Referenced to APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise any organic mercury compounds in the unfiltered sample. The ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM Schedule B(3).
TRH - Semivolatile Fraction	EP071	WATER	In house: Referenced to USEPA SW 846 - 8015 The sample extract is analysed by Capillary GC/FID and quantification is by comparison against an established 5 point calibration curve of n-Alkane standards. This method is compliant with the QC requirements of NEPM Schedule B(3)
TRH Volatiles/BTEX	EP080	WATER	In house: Referenced to USEPA SW 846 - 8260 Water samples are directly purged prior to analysis by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. Alternatively, a sample is equilibrated in a headspace vial and a portion of the headspace determined by GCMS analysis. This method is compliant with the QC requirements of NEPM Schedule B(3)
Preparation Methods	Method	Matrix	Method Descriptions
NaOH leach for CN in Soils	CN-PR	SOIL	In house: APHA 4500 CN. Samples are extracted by end-over-end tumbling with NaOH.
pH in soil using a 0.01M CaCl2 extract	EA001-PR	SOIL	In house: Referenced to Rayment and Lyons 4B1, 10 g of soil is mixed with 50 mL of 0.01M CaCl2 and tumbled end over end for 1 hour. pH is measured from the continuous suspension. This method is compliant with NEPM Schedule B(3).
Exchangeable Cations Preparation Method (Alkaline Soils)	ED006PR	SOIL	In house: Referenced to Rayment and Lyons method 15C1.
Exchangeable Cations Preparation Method	ED007PR	SOIL	In house: Referenced to Rayment & Lyons method 15A1. A 1M NH4Cl extraction by end over end tumbling at a ratio of 1:20. There is no pretreatment for soluble salts. Extracts can be run by ICP for cations.

Page : 16 of 16 Work Order : EM2211061

Client : EDGE GROUP PTY LTD

Preparation Methods	Method	Matrix	Method Descriptions
Alkaline digestion for Hexavalent Chromium	EG048PR	SOIL	In house: Referenced to USEPA SW846, Method 3060A.
Total Fluoride	EK040T-PR	SOIL	In house: Samples are fused with Sodium Carbonate / Potassium Carbonate flux.
1:5 solid / water leach following drying at 40°C	EN34-AD	SOIL	10 g of 40°C dried soil is mixed with 50 mL of reagent grade water and tumbled end over end for 1 hour. Water soluble salts are leached from the soil by the continuous suspension. Samples are settled and the water filtered off for analysis.
Hot Block Digest for metals in soils sediments and sludges	EN69	SOIL	In house: Referenced to USEPA 200.2. Hot Block Acid Digestion 1.0g of sample is heated with Nitric and Hydrochloric acids, then cooled. Peroxide is added and samples heated and cooled again before being filtered and bulked to volume for analysis. Digest is appropriate for determination of selected metals in sludge, sediments, and soils. This method is compliant with NEPM Schedule B(3).
Organic Matter	EP004-PR	SOIL	In house: Referenced to AS1289.4.1.1. Dichromate oxidation method after Walkley and Black. This method is compliant with NEPM Schedule B(3).
Extraction for Phenoxy Acid Herbicides in Soils.	EP202-PR	SOIL	In-House: Alkaline extract followed by SPE clean up of acidified portion of the sample extract.
Methanolic Extraction of Soils for Purge and Trap	ORG16	SOIL	In house: Referenced to USEPA SW 846 - 5030A. 5g of solid is shaken with surrogate and 10mL methanol prior to analysis by Purge and Trap - GC/MS.
Methanolic Extraction of Soils - Ultra-trace.	ORG16-UT	SOIL	In house: Referenced to USEPA SW 846 - 5030A. 5g of solid is shaken with surrogate and 10mL methanol prior to analysis by Purge and Trap - GC/MS.
Tumbler Extraction of Solids	ORG17	SOIL	In house: Mechanical agitation (tumbler). 10g of sample, Na2SO4 and surrogate are extracted with 30mL 1:1 DCM/Acetone by end over end tumble. The solvent is decanted, dehydrated and concentrated (by KD) to the desired volume for analysis.
Tumbler Extraction of Solids - VIC EPA Screen	ORG17-EM	SOIL	In house: Mechanical agitation (tumbler). 10g of sample, Na2SO4 and surrogate are extracted with 30mL 1:1 DCM/Acetone by end over end tumble. The solvent is decanted, dehydrated and concentrated (by KD) to the desired volume for analysis.
Digestion for Total Recoverable Metals	EN25	WATER	In house: Referenced to USEPA SW846-3005. Method 3005 is a Nitric/Hydrochloric acid digestion procedure used to prepare surface and ground water samples for analysis by ICPAES or ICPMS. This method is compliant with NEPM Schedule B(3)
Separatory Funnel Extraction of Liquids	ORG14	WATER	In house: Referenced to USEPA SW 846 - 3510 100 mL to 1L of sample is transferred to a separatory funnel and serially extracted three times using DCM for each extract. The resultant extracts are combined, dehydrated and concentrated for analysis. This method is compliant with NEPM Schedule B(3). ALS default excludes sediment which may be resident in the container.
Volatiles Water Preparation	ORG16-W	WATER	A 5 mL aliquot or 5 mL of a diluted sample is added to a 40 mL VOC vial for purging.

QUALITY CONTROL REPORT

Work Order : **EM2211061** Page : 1 of 32

Client : EDGE GROUP PTY LTD Laboratory : Environmental Division Melbourne

Contact : NATASHA DUN Contact : Hannah White

Address : 423 City Rd Address : 4 Westall Rd Springvale VIC Australia 3171

South Melbourne

: MEBQ/108/21 Primary Work

Telephone : ---- Telephone : +61-3-8549 9600

Project : 20220134 Date Samples Received : 10-Jun-2022
Order number : ---- Date Analysis Commenced : 14-Jun-2022

Sampler : GM and ED

Site : Hopetoun Park

No. of samples analysed : 27

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall

Accreditation No. 825

Accredited for compliance with

not be reproduced, except in full.

This Quality Control Report contains the following information:

: 49

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

Quote number

No. of samples received

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Aleksandar Vujkovic	Laboratory Technician	Newcastle - Inorganics, Mayfield West, NSW
Dilani Fernando	Laboratory Coordinator	Melbourne Inorganics, Springvale, VIC
Franco Lentini	LCMS Coordinator	Sydney Organics, Smithfield, NSW
Jarwis Nheu	Senior Inorganic Chemist	Melbourne Inorganics, Springvale, VIC
Nancy Wang	2IC Organic Chemist	Melbourne Inorganics, Springvale, VIC
Nancy Wang	2IC Organic Chemist	Melbourne Organics, Springvale, VIC
Nikki Stepniewski	Senior Inorganic Instrument Chemist	Melbourne Inorganics, Springvale, VIC
Xing Lin	Senior Organic Chemist	Melbourne Organics, Springvale, VIC

Page : 2 of 32 Work Order : EM2211061

Client : EDGE GROUP PTY LTD

Project : 20220134

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: SOIL	atory sample ID Sample ID Method: Compound CAS Number					Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EG005(ED093)T: To	tal Metals by ICP-AES	(QC Lot: 4400651)							
EM2211035-001	Anonymous	EG005T: Lead	7439-92-1	5	mg/kg	381	# 1870	132	0% - 20%
		EG005T: Zinc	7440-66-6	5	mg/kg	196	195	0.0	0% - 20%
EM2211035-013	Anonymous	EG005T: Zinc	7440-66-6	5	mg/kg	102	# 71	35.1	0% - 20%
EM2211035-001	Anonymous	EG005T: Beryllium	7440-41-7	1	mg/kg	<1	<1	0.0	No Limit
		EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.0	No Limit
		EG005T: Barium	7440-39-3	10	mg/kg	280	290	0.0	0% - 20%
		EG005T: Chromium	7440-47-3	2	mg/kg	13	12	10.2	No Limit
		EG005T: Cobalt	7440-48-4	2	mg/kg	6	5	27.8	No Limit
		EG005T: Molybdenum	7439-98-7	2	mg/kg	<2	<2	0.0	No Limit
		EG005T: Nickel	7440-02-0	2	mg/kg	18	16	15.5	No Limit
		EG005T: Silver	7440-22-4	2	mg/kg	<2	<2	0.0	No Limit
		EG005T: Arsenic	7440-38-2	5	mg/kg	8	<5	42.5	No Limit
		EG005T: Copper	7440-50-8	5	mg/kg	44	48	8.7	No Limit
		EG005T: Manganese	7439-96-5	5	mg/kg	70	73	3.7	0% - 50%
		EG005T: Selenium	7782-49-2	5	mg/kg	<5	<5	0.0	No Limit
		EG005T: Tin	7440-31-5	5	mg/kg	8	<5	46.4	No Limit
		EG005T: Vanadium	7440-62-2	5	mg/kg	16	11	36.0	No Limit
		EG005T: Boron	7440-42-8	50	mg/kg	<50	<50	0.0	No Limit
EM2211035-013	Anonymous	EG005T: Beryllium	7440-41-7	1	mg/kg	2	1	0.0	No Limit
		EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.0	No Limit
		EG005T: Barium	7440-39-3	10	mg/kg	140	90	40.6	0% - 50%
		EG005T: Chromium	7440-47-3	2	mg/kg	33	31	7.1	0% - 50%
		EG005T: Cobalt	7440-48-4	2	mg/kg	11	9	23.7	No Limit
		EG005T: Molybdenum	7439-98-7	2	mg/kg	<2	<2	0.0	No Limit

Page : 3 of 32 Work Order : EM2211061

Client : EDGE GROUP PTY LTD

Sub-Matrix: SOIL						Laboratory	Duplicate (DUP) Report	t	
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EG005(ED093)T: Tot	tal Metals by ICP-AES	(QC Lot: 4400651) - continued							
EM2211035-013	Anonymous	EG005T: Nickel	7440-02-0	2	mg/kg	22	20	9.6	0% - 50%
		EG005T: Silver	7440-22-4	2	mg/kg	<2	<2	0.0	No Limit
		EG005T: Arsenic	7440-38-2	5	mg/kg	14	11	24.5	No Limit
		EG005T: Copper	7440-50-8	5	mg/kg	22	28	23.3	No Limit
		EG005T: Lead	7439-92-1	5	mg/kg	62	41	39.6	0% - 50%
		EG005T: Manganese	7439-96-5	5	mg/kg	50	47	4.7	No Limit
		EG005T: Selenium	7782-49-2	5	mg/kg	<5	<5	0.0	No Limit
		EG005T: Tin	7440-31-5	5	mg/kg	<5	<5	0.0	No Limit
		EG005T: Vanadium	7440-62-2	5	mg/kg	42	34	21.8	No Limit
		EG005T: Boron	7440-42-8	50	mg/kg	<50	<50	0.0	No Limit
EG005(ED093)T: Tot	tal Metals by ICP-AES	(QC Lot: 4400652)							
EM2211061-014	BH05 - 0.5	EG005T: Chromium	7440-47-3	2	mg/kg	42	41	0.0	0% - 20%
		EG005T: Cobalt	7440-48-4	2	mg/kg	15	18	20.7	No Limit
		EG005T: Nickel	7440-02-0	2	mg/kg	29	28	0.0	0% - 50%
		EG005T: Manganese	7439-96-5	5	mg/kg	89	# 124	32.9	0% - 20%
		EG005T: Vanadium	7440-62-2	5	mg/kg	64	64	0.0	0% - 50%
EM2211061-014	BH05 - 0.5	EG005T: Beryllium	7440-41-7	1	mg/kg	<1	2	0.0	No Limit
		EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.0	No Limit
		EG005T: Barium	7440-39-3	10	mg/kg	40	60	56.7	No Limit
		EG005T: Molybdenum	7439-98-7	2	mg/kg	<2	<2	0.0	No Limit
		EG005T: Silver	7440-22-4	2	mg/kg	<2	<2	0.0	No Limit
		EG005T: Arsenic	7440-38-2	5	mg/kg	6	11	58.7	No Limit
		EG005T: Copper	7440-50-8	5	mg/kg	8	16	62.3	No Limit
		EG005T: Lead	7439-92-1	5	mg/kg	8	16	71.0	No Limit
		EG005T: Selenium	7782-49-2	5	mg/kg	<5	<5	0.0	No Limit
		EG005T: Tin	7440-31-5	5	mg/kg	<5	<5	0.0	No Limit
		EG005T: Zinc	7440-66-6	5	mg/kg	9	17	61.3	No Limit
		EG005T: Boron	7440-42-8	50	mg/kg	<50	<50	0.0	No Limit
		EG005T: Iron	7439-89-6	50	mg/kg	21000	20700	1.2	0% - 20%
EM2211061-031	BH09 - 0.5	EG005T: Beryllium	7440-41-7	1	mg/kg	1	1	0.0	No Limit
		EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.0	No Limit
		EG005T: Barium	7440-39-3	10	mg/kg	600	620	3.6	0% - 20%
		EG005T: Chromium	7440-47-3	2	mg/kg	31	29	7.7	0% - 50%
		EG005T: Cobalt	7440-48-4	2	mg/kg	21	18	14.6	0% - 50%
		EG005T: Molybdenum	7439-98-7	2	mg/kg	<2	<2	0.0	No Limit
		EG005T: Nickel	7440-02-0	2	mg/kg	45	44	2.5	0% - 20%
		EG005T: Silver	7440-22-4	2	mg/kg	<2	<2	0.0	No Limit
		EG005T: Arsenic	7440-38-2	5	mg/kg	8	9	14.4	No Limit
		EG005T: Copper	7440-50-8	5	mg/kg	16	15	0.0	No Limit
		EG005T: Lead	7439-92-1	5	mg/kg	12	13	0.0	No Limit

Page : 4 of 32 Work Order : EM2211061

Client : EDGE GROUP PTY LTD

Sub-Matrix: SOIL						Laboratory I	Duplicate (DUP) Report	:	
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EG005(ED093)T: Tot	tal Metals by ICP-AES((QC Lot: 4400652) - continued							
EM2211061-031	BH09 - 0.5	EG005T: Manganese	7439-96-5	5	mg/kg	514	501	2.5	0% - 20%
		EG005T: Selenium	7782-49-2	5	mg/kg	<5	<5	0.0	No Limit
		EG005T: Tin	7440-31-5	5	mg/kg	<5	<5	0.0	No Limit
		EG005T: Vanadium	7440-62-2	5	mg/kg	68	72	5.3	0% - 50%
		EG005T: Zinc	7440-66-6	5	mg/kg	24	23	0.0	No Limit
		EG005T: Boron	7440-42-8	50	mg/kg	60	50	0.0	No Limit
		EG005T: Iron	7439-89-6	50	mg/kg	3.91 %	39600	1.1	0% - 20%
EA001: pH in soil us	sing 0.01M CaCl extract	(QC Lot: 4400656)							
EM2210946-002	Anonymous	EA001: pH (CaCl2)		0.1	pH Unit	6.0	6.1	0.0	0% - 20%
EM2211061-020	SP01	EA001: pH (CaCl2)		0.1	pH Unit	7.5	7.6	0.0	0% - 20%
EA055: Moisture Co	ntent (Dried @ 105-110°								
EM2211061-001	BH01 - 0.1	EA055: Moisture Content		0.1	%	6.8	7.5	9.5	No Limit
EM2211061-020	SP01	EA055: Moisture Content		0.1	%	7.4	7.4	0.0	No Limit
FA055: Moisture Co	ntent (Dried @ 105-110°								
EM2211061-039	BH11 - 0.1	EA055: Moisture Content		0.1	%	4.8	3.8	23.6	No Limit
EM2211149-002	Anonymous	EA055: Moisture Content		0.1	%	10.5	9.7	8.2	0% - 50%
		Soils (QC Lot: 4403505)		U.	,,	10.0	0	V.=	070 0070
EM2211061-019	BH07 - 0.1			0.1	_	1.1	1.0	0.0	No Limit
EWI2211001-019	БП07 - 0.1	ED006: Calcium/Magnesium Ratio		0.1	-	1.1 4.4	4.4	0.0	0% - 20%
		ED006: Magnesium/Potassium Ratio		0.1	%	38.0	37.7	0.0	0% - 20%
		ED006: Exchangeable Calcium Percent		0.2	%	35.7	35.7	0.0	0% - 20%
		ED006: Exchangeable Magnesium Percent		0.2	%	8.1	8.2	0.0	0% - 20%
		ED006: Exchangeable Potassium Percent		0.2	%	18.2	18.4	1.4	0% - 20%
		ED006: Exchangeable Sodium Percent ED006: Exchangeable Calcium		0.2	meg/100g	4.7	4.8	2.4	0% - 20%
		ED006: Exchangeable Calcium ED006: Exchangeable Magnesium		0.2	meq/100g	4.4	4.6	3.2	0% - 20%
		ED006: Exchangeable Magnesium		0.2	meg/100g	1.0	1.0	0.0	No Limit
		ED006: Exchangeable Folassium		0.2	meq/100g	2.2	2.4	4.6	0% - 50%
		ED006: Cation Exchange Capacity		0.2	meg/100g	12.4	12.8	3.2	0% - 20%
EG035T: Total Poc	overable Mercury by FIN			• :-		<u> </u>	1-1-1		
EM2211035-001	Anonymous		7439-97-6	0.1	ma/ka	0.2	0.1	0.0	No Limit
EM2211035-001 EM2211035-013	Anonymous	EG035T: Mercury	7439-97-6	0.1	mg/kg mg/kg	0.2	<0.1	0.0	No Limit
	-	EG035T: Mercury	7439-97-0	0.1	mg/kg	0.1	~0.1	0.0	NO LITTIL
	overable Mercury by FIN		7400.07.0	2.4		2.1	0.4		A1 1 2
EM2211061-014	BH05 - 0.5	EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.0	No Limit
EM2211061-031	BH09 - 0.5	EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.0	No Limit
	Chromium (Alkaline Dig	gest) (QC Lot: 4400826)							
EM2210622-001	Anonymous	EG048G: Hexavalent Chromium	18540-29-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
EM2211061-001	BH01 - 0.1	EG048G: Hexavalent Chromium	18540-29-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
EK026SF: Total CN	by Segmented Flow An	nalyser (QC Lot: 4403123)							
EM2211058-006	Anonymous	EK026SF: Total Cyanide	57-12-5	1	mg/kg	<1	<1	0.0	No Limit

Page : 5 of 32 Work Order : EM2211061

Client : EDGE GROUP PTY LTD

Sub-Matrix: SOIL						Laboratory	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EK026SF: Total CN	by Segmented Flov	v Analyser (QC Lot: 4403123) - continued							
EM2210714-001	Anonymous	EK026SF: Total Cyanide	57-12-5	1	mg/kg	<1	<1	0.0	No Limit
EK028SF: Weak Ac	id Dissociable CN b	y Segmented Flow Analyser (QC Lot: 4403126)							
EM2211061-001	BH01 - 0.1	EK028SF: Weak Acid Dissociable Cyanide		1	mg/kg	<1	<1	0.0	No Limit
EK040T: Fluoride To	otal (QC Lot: 44008	20)							
EM2210946-002	Anonymous	EK040T: Fluoride	16984-48-8	40	mg/kg	370	330	10.7	No Limit
EM2211131-030	Anonymous	EK040T: Fluoride	16984-48-8	40	mg/kg	130	120	10.4	No Limit
EP004: Organic Mat	ter (QC Lot: 440587	(2)							
EM2210740-005	Anonymous	EP004: Organic Matter		0.5	%	26.7	26.0	2.4	0% - 20%
		EP004: Total Organic Carbon		0.5	%	15.5	15.1	2.4	0% - 20%
EM2211170-029	Anonymous	EP004: Organic Matter		0.5	%	3.3	3.4	0.0	No Limit
		EP004: Total Organic Carbon		0.5	%	1.9	1.9	0.0	No Limit
EP066: Polychlorina	ated Biphenyls (PCE	B) (QC Lot: 4400518)							
EM2211035-001	Anonymous	EP066-EM: Total Polychlorinated biphenyls		0.1	mg/kg	<0.4	<0.4	0.0	No Limit
EM2211156-059	Anonymous	EP066-EM: Total Polychlorinated biphenyls		0.1	mg/kg	<0.1	<0.1	0.0	No Limit
EP066: Polychlorina	ated Biphenvis (PCE	B) (QC Lot: 4400532)							
EM2211061-001	BH01 - 0.1	EP066: Total Polychlorinated biphenyls		0.1	mg/kg	<0.1	<0.1	0.0	No Limit
		C) (QC Lot: 4400531)			3 3				
EM2211061-001	BH01 - 0.1	EP068: alpha-BHC	319-84-6	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
	2	EP068: Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: beta-BHC	319-85-7	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: gamma-BHC	58-89-9	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: delta-BHC	319-86-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Heptachlor	76-44-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Aldrin	309-00-2	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Dieldrin	60-57-1	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: 4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Endrin	72-20-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: 4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Mirex	2385-85-5	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: 4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP068: Methoxychlor	72-43-5	0.2	mg/kg	<0.2	<0.2	0.0	No Limit

Page : 6 of 32 Work Order : EM2211061

Client : EDGE GROUP PTY LTD

Sub-Matrix: SOIL						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EP068B: Organopho	sphorus Pesticides (OP) (QC Lot: 4400531)							
EM2211061-001	BH01 - 0.1	EP068: Dichlorvos	62-73-7	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Demeton-S-methyl	919-86-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Dimethoate	60-51-5	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Diazinon	333-41-5	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Chlorpyrifos-methyl	5598-13-0	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Malathion	121-75-5	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Fenthion	55-38-9	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Chlorpyrifos	2921-88-2	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Pirimphos-ethyl	23505-41-1	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Chlorfenvinphos	470-90-6	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Bromophos-ethyl	4824-78-6	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Fenamiphos	22224-92-6	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Prothiofos	34643-46-4	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Ethion	563-12-2	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Carbophenothion	786-19-6	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Azinphos Methyl	86-50-0	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Monocrotophos	6923-22-4	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP068: Parathion-methyl	298-00-0	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP068: Parathion	56-38-2	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
EP068C: Triazines (QC Lot: 4400531)								
EM2211061-001	BH01 - 0.1	EP068: Atrazine	1912-24-9	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
EP068D: Pyrethroids	(QC Lot: 4400531)								
EM2211061-001	BH01 - 0.1	EP068: Bifenthrin	82657-04-3	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
EP069: Toxaphene (QC Lot: 4400534)				0 0				
EM2211061-001	BH01 - 0.1	EP069: Toxaphene	8001-35-2	2	mg/kg	<2	<2	0.0	No Limit
			0001-33-2		mg/kg			0.0	NO LITTIE
	,	ons (QC Lot: 4400434)	74.40.0	0.0		-0.0	10.0	0.0	Ale Lines
EM2210946-002	Anonymous	EP074-UT: Benzene	71-43-2 108-88-3	0.2	mg/kg	<0.2 <0.5	<0.2 <0.5	0.0	No Limit No Limit
		EP074-UT: Toluene			mg/kg			0.0	
		EP074-UT: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5 <0.5	<0.5 <0.5	0.0	No Limit No Limit
		EP074-UT: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.0	NO LITTIL
		EDOZA LIT. Characa	106-42-3 100-42-5	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP074-UT: Styrene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
EDOZALI, Navikala da	. (001 - (-4400404)	EP074-UT: ortho-Xylene	95-47-0	0.5	mg/kg	~0.5	~0.3	0.0	NO LITTIL
EP074H: Naphthalen			04.00.0	4		-4	-4	0.0	No. 1 insit
EM2210946-002	Anonymous	EP074-UT: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.0	No Limit
EP074I: Volatile Halo	•	(QC Lot: 4400434)							
EM2210946-002	Anonymous	EP074-UT: 1.1-Dichloroethene	75-35-4	0.01	mg/kg	<0.01	<0.01	0.0	No Limit
		EP074-UT: cis-1.2-Dichloroethene	156-59-2	0.01	mg/kg	<0.01	<0.01	0.0	No Limit
		EP074-UT: 1.1.1-Trichloroethane	71-55-6	0.01	mg/kg	<0.01	<0.01	0.0	No Limit

Page : 7 of 32 Work Order : EM2211061

Client : EDGE GROUP PTY LTD

Sub-Matrix: SOIL									
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EP074I: Volatile Halo	genated Compounds	(QC Lot: 4400434) - continued							
EM2210946-002	Anonymous	EP074-UT: Carbon Tetrachloride	56-23-5	0.01	mg/kg	<0.01	<0.01	0.0	No Limit
		EP074-UT: 1.1.1.2-Tetrachloroethane	630-20-6	0.01	mg/kg	<0.01	<0.01	0.0	No Limit
		EP074-UT: 1.2.4-Trichlorobenzene	120-82-1	0.01	mg/kg	<0.01	<0.01	0.0	No Limit
		EP074-UT: Vinyl chloride	75-01-4	0.02	mg/kg	<0.02	<0.02	0.0	No Limit
		EP074-UT: trans-1.2-Dichloroethene	156-60-5	0.02	mg/kg	<0.02	<0.02	0.0	No Limit
		EP074-UT: Chloroform	67-66-3	0.02	mg/kg	<0.02	<0.02	0.0	No Limit
		EP074-UT: 1.2-Dichloroethane	107-06-2	0.02	mg/kg	<0.02	<0.02	0.0	No Limit
		EP074-UT: Trichloroethene	79-01-6	0.02	mg/kg	<0.02	<0.02	0.0	No Limit
		EP074-UT: Tetrachloroethene	127-18-4	0.02	mg/kg	<0.02	<0.02	0.0	No Limit
		EP074-UT: 1.1.2.2-Tetrachloroethane	79-34-5	0.02	mg/kg	<0.02	<0.02	0.0	No Limit
		EP074-UT: Hexachlorobutadiene	87-68-3	0.02	mg/kg	<0.02	<0.02	0.0	No Limit
		EP074-UT: Chlorobenzene	108-90-7	0.02	mg/kg	<0.02	<0.02	0.0	No Limit
		EP074-UT: 1.4-Dichlorobenzene	106-46-7	0.02	mg/kg	<0.02	<0.02	0.0	No Limit
		EP074-UT: 1.2-Dichlorobenzene	95-50-1	0.02	mg/kg	<0.02	<0.02	0.0	No Limit
		EP074-UT: 1.1.2-Trichloroethane	79-00-5	0.04	mg/kg	<0.04	<0.04	0.0	No Limit
		EP074-UT: Methylene chloride	75-09-2	0.4	mg/kg	<0.4	<0.4	0.0	No Limit
EP075(SIM)A: Pheno	olic Compounds (QC	Lot: 4400535)							
EM2211061-033	BH09 - 0.1	EP075(SIM): Phenol	108-95-2	0.5	mg/kg	<1.2	<1.2	0.0	No Limit
		EP075(SIM): 2-Chlorophenol	95-57-8	0.5	mg/kg	<1.2	<1.2	0.0	No Limit
		EP075(SIM): 2-Methylphenol	95-48-7	0.5	mg/kg	<1.2	<1.2	0.0	No Limit
		EP075(SIM): 2-Nitrophenol	88-75-5	0.5	mg/kg	<1.2	<1.2	0.0	No Limit
		EP075(SIM): 2.4-Dimethylphenol	105-67-9	0.5	mg/kg	<1.2	<1.2	0.0	No Limit
		EP075(SIM): 2.4-Dichlorophenol	120-83-2	0.5	mg/kg	<1.2	<1.2	0.0	No Limit
		EP075(SIM): 2.6-Dichlorophenol	87-65-0	0.5	mg/kg	<1.2	<1.2	0.0	No Limit
		EP075(SIM): 4-Chloro-3-methylphenol	59-50-7	0.5	mg/kg	<1.2	<1.2	0.0	No Limit
		EP075(SIM): 2.4.6-Trichlorophenol	88-06-2	0.5	mg/kg	<1.2	<1.2	0.0	No Limit
		EP075(SIM): 2.4.5-Trichlorophenol	95-95-4	0.5	mg/kg	<1.2	<1.2	0.0	No Limit
		EP075(SIM): 3- & 4-Methylphenol	1319-77-3	1	mg/kg	<2	<2	0.0	No Limit
		EP075(SIM): Pentachlorophenol	87-86-5	2	mg/kg	<2	<2	0.0	No Limit
EM2211061-001	BH01 - 0.1	EP075(SIM): Phenol	108-95-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): 2-Chlorophenol	95-57-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): 2-Methylphenol	95-48-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): 2-Nitrophenol	88-75-5	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): 2.4-Dimethylphenol	105-67-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): 2.4-Dichlorophenol	120-83-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): 2.6-Dichlorophenol	87-65-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): 4-Chloro-3-methylphenol	59-50-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): 2.4.6-Trichlorophenol	88-06-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): 2.4.5-Trichlorophenol	95-95-4	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): 3- & 4-Methylphenol	1319-77-3	1	mg/kg	<1	<1	0.0	No Limit

Page : 8 of 32 Work Order : EM2211061

Client : EDGE GROUP PTY LTD

Sub-Matrix: SOIL						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EP075(SIM)A: Pheno	olic Compounds (QC L	_ot: 4400535) - continued							
EM2211061-001	BH01 - 0.1	EP075(SIM): Pentachlorophenol	87-86-5	2	mg/kg	<2	<2	0.0	No Limit
EP075(SIM)A: Pheno	olic Compounds (QC L	ot: 4403571)							
EM2211061-026	SP07	EP075(SIM): Phenol	108-95-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): 2-Chlorophenol	95-57-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): 2-Methylphenol	95-48-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): 2-Nitrophenol	88-75-5	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): 2.4-Dimethylphenol	105-67-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): 2.4-Dichlorophenol	120-83-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): 2.6-Dichlorophenol	87-65-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): 4-Chloro-3-methylphenol	59-50-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): 2.4.6-Trichlorophenol	88-06-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): 2.4.5-Trichlorophenol	95-95-4	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): 3- & 4-Methylphenol	1319-77-3	1	mg/kg	<1	<1	0.0	No Limit
		EP075(SIM): Pentachlorophenol	87-86-5	2	mg/kg	<2	<2	0.0	No Limit
EP075(SIM)B: Polyn	uclear Aromatic Hydro	ocarbons (QC Lot: 4400535)							
EM2211061-033	BH09 - 0.1	EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<1.2	<1.2	0.0	No Limit
		EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<1.2	<1.2	0.0	No Limit
		EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<1.2	<1.2	0.0	No Limit
		EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<1.2	<1.2	0.0	No Limit
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<1.2	<1.2	0.0	No Limit
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<1.2	<1.2	0.0	No Limit
		EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<1.2	<1.2	0.0	No Limit
		EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<1.2	<1.2	0.0	No Limit
		EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<1.2	<1.2	0.0	No Limit
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<1.2	<1.2	0.0	No Limit
		EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	0.5	mg/kg	<1.2	<1.2	0.0	No Limit
			205-82-3						
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<1.2	<1.2	0.0	No Limit
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<1.2	<1.2	0.0	No Limit
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<1.2	<1.2	0.0	No Limit
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<1.2	<1.2	0.0	No Limit
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<1.2	<1.2	0.0	No Limit
EM2211061-001	BH01 - 0.1	EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit

Page : 9 of 32 Work Order : EM2211061

Client : EDGE GROUP PTY LTD

Sub-Matrix: SOIL						Laboratory	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EP075(SIM)B: Polyn	uclear Aromatic Hydro	ocarbons (QC Lot: 4400535) - continued							
EM2211061-001	BH01 - 0.1	EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
			205-82-3						
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
EP075(SIM)B: Polyn	uclear Aromatic Hydro	ocarbons (QC Lot: 4403571)							
EM2211061-026	SP07	EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		, , , ,	205-82-3						
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
EP075A: Phenolic C	ompounds (Halogenat	ted) (QC Lot: 4400516)							
EM2211035-001	Anonymous	EP075-EM: 2-Chlorophenol	95-57-8	0.03	mg/kg	<0.14	<0.14	0.0	No Limit
		EP075-EM: 2.4-Dichlorophenol	120-83-2	0.03	mg/kg	<0.14	<0.14	0.0	No Limit
		EP075-EM: 2.6-Dichlorophenol	87-65-0	0.03	mg/kg	<0.14	<0.14	0.0	No Limit
		EP075-EM: 4-Chloro-3-methylphenol	59-50-7	0.03	mg/kg	<0.14	<0.14	0.0	No Limit
		EP075-EM: 2.3.5.6-Tetrachlorophenol	935-95-5	0.03	mg/kg	<0.14	<0.14	0.0	No Limit
		EP075-EM: 2.4.5-Trichlorophenol	95-95-4	0.05	mg/kg	<0.14	<0.14	0.0	No Limit
		EP075-EM: 2.4.6-Trichlorophenol	88-06-2	0.05	mg/kg	<0.14	<0.14	0.0	No Limit
		EP075-EM: 2.3.4.5 & 2.3.4.6-Tetrachlorophenol	4901-51-3/58-9	0.05	mg/kg	<0.14	<0.14	0.0	No Limit
			0-2						
		EP075-EM: Pentachlorophenol	87-86-5	0.2	mg/kg	<0.3	<0.3	0.0	No Limit
EM2211156-059	Anonymous	EP075-EM: 2-Chlorophenol	95-57-8	0.03	mg/kg	<0.03	<0.03	0.0	No Limit
		EP075-EM: 2.4-Dichlorophenol	120-83-2	0.03	mg/kg	<0.03	<0.03	0.0	No Limit

Page : 10 of 32 Work Order : EM2211061

Client : EDGE GROUP PTY LTD

Sub-Matrix: SOIL						Laboratory	Duplicate (DUP) Report	t	
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EP075A: Phenolic C	Compounds (Halogen	ated) (QC Lot: 4400516) - continued							
EM2211156-059	Anonymous	EP075-EM: 2.6-Dichlorophenol	87-65-0	0.03	mg/kg	<0.03	<0.03	0.0	No Limit
		EP075-EM: 4-Chloro-3-methylphenol	59-50-7	0.03	mg/kg	<0.03	<0.03	0.0	No Limit
		EP075-EM: 2.3.5.6-Tetrachlorophenol	935-95-5	0.03	mg/kg	<0.03	<0.03	0.0	No Limit
		EP075-EM: 2.4.5-Trichlorophenol	95-95-4	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP075-EM: 2.4.6-Trichlorophenol	88-06-2	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP075-EM: 2.3.4.5 & 2.3.4.6-Tetrachlorophenol	4901-51-3/58-9 0-2	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP075-EM: Pentachlorophenol	87-86-5	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
EP075A: Phenolic C	Compounds (Non-halo	ogenated) (QC Lot: 4400516)							
EM2211035-001	Anonymous	EP075-EM: Phenol	108-95-2	1	mg/kg	2	<1	0.0	No Limit
	7oyouo	EP075-EM: 2-Methylphenol	95-48-7	1	mg/kg	1	<1	0.0	No Limit
		EP075-EM: 3- & 4-Methylphenol	1319-77-3	1	mg/kg	2	2	0.0	No Limit
		EP075-EM: 2-Nitrophenol	88-75-5	1	mg/kg	<1	<1	0.0	No Limit
		EP075-EM: 2.4-Dimethylphenol	105-67-9	1	mg/kg	1	<1	0.0	No Limit
		EP075-EM: 2.4-Dinitrophenol	51-28-5	5	mg/kg	<6	<6	0.0	No Limit
		EP075-EM: 4-Nitrophenol	100-02-7	5	mg/kg	<6	<6	0.0	No Limit
		EP075-EM: 2-Methyl-4.6-dinitrophenol	8071-51-0	5	mg/kg	<6	<6	0.0	No Limit
		EP075-EM: Dinoseb	88-85-7	5	mg/kg	<6	<6	0.0	No Limit
		EP075-EM: 2-Cyclohexyl-4.6-Dinitrophenol	131-89-5	5	mg/kg	<6	<6	0.0	No Limit
EM2211156-059	Anonymous	EP075-EM: Phenol	108-95-2	1	mg/kg	<1	<1	0.0	No Limit
	, , , , , ,	EP075-EM: 2-Methylphenol	95-48-7	1	mg/kg	<1	<1	0.0	No Limit
		EP075-EM: 3- & 4-Methylphenol	1319-77-3	1	mg/kg	<1	<1	0.0	No Limit
		EP075-EM: 2-Nitrophenol	88-75-5	1	mg/kg	<1	<1	0.0	No Limit
		EP075-EM: 2.4-Dimethylphenol	105-67-9	1	mg/kg	<1	<1	0.0	No Limit
		EP075-EM: 2.4-Dinitrophenol	51-28-5	5	mg/kg	<5	<5	0.0	No Limit
		EP075-EM: 4-Nitrophenol	100-02-7	5	mg/kg	<5	<5	0.0	No Limit
		EP075-EM: 2-Methyl-4.6-dinitrophenol	8071-51-0	5	mg/kg	<5	<5	0.0	No Limit
		EP075-EM: Dinoseb	88-85-7	5	mg/kg	<5	<5	0.0	No Limit
		EP075-EM: 2-Cyclohexyl-4.6-Dinitrophenol	131-89-5	5	mg/kg	<5	<5	0.0	No Limit
EP075B: Polynuclea	ar Aromatic Hydrocar	bons (QC Lot: 4400516)							
EM2211035-001	Anonymous	EP075-EM: Naphthalene	91-20-3	0.5	mg/kg	2.4	1.8	29.8	No Limit
		EP075-EM: Acenaphthene	83-32-9	0.5	mg/kg	1.7	0.7	85.2	No Limit
		EP075-EM: Acenaphthylene	208-96-8	0.5	mg/kg	20.2	# 11.3	56.8	0% - 20%
		EP075-EM: Fluorene	86-73-7	0.5	mg/kg	9.7	# 4.7	69.4	0% - 50%
		EP075-EM: Phenanthrene	85-01-8	0.5	mg/kg	108	# 74.5	36.7	0% - 20%
		EP075-EM: Anthracene	120-12-7	0.5	mg/kg	34.8	# 23.5	39.0	0% - 20%
		EP075-EM: Fluoranthene	206-44-0	0.5	mg/kg	176	# 117	40.1	0% - 20%
		EP075-EM: Pyrene	129-00-0	0.5	mg/kg	178	# 121	37.8	0% - 20%
		EP075-EM: Benz(a)anthracene	56-55-3	0.5	mg/kg	101	# 68.8	37.6	0% - 20%
		EP075-EM: Chrysene	218-01-9	0.5	mg/kg	89.7	# 58.5	42.0	0% - 20%

Page : 11 of 32 Work Order : EM2211061

Client : EDGE GROUP PTY LTD

Sub-Matrix: SOIL						Laboratory !	Duplicate (DUP) Report	DUP) Report			
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)		
EP075B: Polynuclea	ar Aromatic Hydrocarbo	ons (QC Lot: 4400516) - continued									
EM2211035-001	Anonymous	EP075-EM: Benzo(a)pyrene	50-32-8	0.5	mg/kg	99.8	# 66.3	40.3	0% - 20%		
		EP075-EM: Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	32.7	# 23.2	33.9	0% - 20%		
		EP075-EM: Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	9.8	6.9	34.9	0% - 50%		
		EP075-EM: Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	30.4	# 22.2	31.1	0% - 20%		
		EP075-EM: Benzo(b+j) & Benzo(k)fluoranthene	205-99-2	1	mg/kg	170	# 109	43.6	0% - 20%		
EM0044450.050	A		207-08-9	0.5		10.5	10.5		No. 1 See 16		
EM2211156-059	Anonymous	EP075-EM: Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP075-EM: Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP075-EM: Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP075-EM: Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP075-EM: Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP075-EM: Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP075-EM: Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP075-EM: Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP075-EM: Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP075-EM: Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP075-EM: Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP075-EM: Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP075-EM: Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP075-EM: Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP075-EM: Benzo(b+j) & Benzo(k)fluoranthene	205-99-2	1	mg/kg	<1.0	<1.0	0.0	No Limit		
			207-08-9								
EP075I: Organochlo	orine Pesticides (QC Lo	ot: 4400516)									
EM2211035-001	Anonymous	EP075-EM: alpha-BHC	319-84-6	0.03	mg/kg	<0.14	<0.14	0.0	No Limit		
		EP075-EM: Hexachlorobenzene (HCB)	118-74-1	0.03	mg/kg	<0.14	<0.14	0.0	No Limit		
		EP075-EM: beta-BHC	319-85-7	0.03	mg/kg	<0.14	<0.14	0.0	No Limit		
		EP075-EM: gamma-BHC	58-89-9	0.03	mg/kg	<0.14	<0.14	0.0	No Limit		
		EP075-EM: delta-BHC	319-86-8	0.03	mg/kg	<0.14	<0.14	0.0	No Limit		
		EP075-EM: Heptachlor	76-44-8	0.03	mg/kg	<0.14	<0.14	0.0	No Limit		
		EP075-EM: Aldrin	309-00-2	0.03	mg/kg	<0.14	<0.14	0.0	No Limit		
		EP075-EM: Heptachlor epoxide	1024-57-3	0.03	mg/kg	<0.14	<0.14	0.0	No Limit		
		EP075-EM: cis-Chlordane	5103-71-9	0.03	mg/kg	<0.14	<0.14	0.0	No Limit		
		EP075-EM: trans-Chlordane	5103-74-2	0.03	mg/kg	<0.14	<0.14	0.0	No Limit		
		EP075-EM: Endosulfan 1	959-98-8	0.03	mg/kg	<0.14	<0.14	0.0	No Limit		
		EP075-EM: Dieldrin	60-57-1	0.03	mg/kg	<0.14	<0.14	0.0	No Limit		
		EP075-EM: Endrin aldehyde	7421-93-4	0.03	mg/kg	<0.14	<0.14	0.0	No Limit		
		EP075-EM: Endrin	72-20-8	0.03	mg/kg	<0.14	<0.14	0.0	No Limit		
		EP075-EM: Endosulfan 2	33213-65-9	0.03	mg/kg	<0.14	<0.14	0.0	No Limit		
		EP075-EM: Endosulfan sulfate	1031-07-8	0.03	mg/kg	<0.14	<0.14	0.0	No Limit		

Page : 12 of 32 Work Order : EM2211061

Client : EDGE GROUP PTY LTD

Sub-Matrix: SOIL						Laboratory	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EP075I: Organochlo	rine Pesticides (QC	Lot: 4400516) - continued							
EM2211035-001	Anonymous	EP075-EM: 4.4`-DDE	72-55-9	0.05	mg/kg	<0.14	<0.14	0.0	No Limit
		EP075-EM: 4.4`-DDD	72-54-8	0.05	mg/kg	<0.14	<0.14	0.0	No Limit
		EP075-EM: 4.4`-DDT	50-29-3	0.05	mg/kg	<0.14	<0.14	0.0	No Limit
EM2211156-059	Anonymous	EP075-EM: alpha-BHC	319-84-6	0.03	mg/kg	<0.03	<0.03	0.0	No Limit
		EP075-EM: Hexachlorobenzene (HCB)	118-74-1	0.03	mg/kg	<0.03	<0.03	0.0	No Limit
		EP075-EM: beta-BHC	319-85-7	0.03	mg/kg	<0.03	<0.03	0.0	No Limit
		EP075-EM: gamma-BHC	58-89-9	0.03	mg/kg	<0.03	<0.03	0.0	No Limit
		EP075-EM: delta-BHC	319-86-8	0.03	mg/kg	<0.03	<0.03	0.0	No Limit
		EP075-EM: Heptachlor	76-44-8	0.03	mg/kg	<0.03	<0.03	0.0	No Limit
		EP075-EM: Aldrin	309-00-2	0.03	mg/kg	<0.03	<0.03	0.0	No Limit
		EP075-EM: Heptachlor epoxide	1024-57-3	0.03	mg/kg	<0.03	<0.03	0.0	No Limit
		EP075-EM: cis-Chlordane	5103-71-9	0.03	mg/kg	<0.03	<0.03	0.0	No Limit
		EP075-EM: trans-Chlordane	5103-74-2	0.03	mg/kg	<0.03	<0.03	0.0	No Limit
		EP075-EM: Endosulfan 1	959-98-8	0.03	mg/kg	<0.03	<0.03	0.0	No Limit
		EP075-EM: Dieldrin	60-57-1	0.03	mg/kg	<0.03	<0.03	0.0	No Limit
		EP075-EM: Endrin aldehyde	7421-93-4	0.03	mg/kg	<0.03	<0.03	0.0	No Limit
		EP075-EM: Endrin	72-20-8	0.03	mg/kg	<0.03	<0.03	0.0	No Limit
		EP075-EM: Endosulfan 2	33213-65-9	0.03	mg/kg	<0.03	<0.03	0.0	No Limit
		EP075-EM: Endosulfan sulfate	1031-07-8	0.03	mg/kg	<0.03	<0.03	0.0	No Limit
		EP075-EM: Methoxychlor	72-43-5	0.03	mg/kg	<0.03	<0.03	0.0	No Limit
		EP075-EM: 4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP075-EM: 4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP075-EM: 4.4`-DDT	50-29-3	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
EP080/071: Total Pe	troleum Hydrocarbor	ns (QC Lot: 4400434)							
EM2210946-002	Anonymous	EP074-UT: C6 - C9 Fraction		10	mg/kg	<10	<10	0.0	No Limit
EP080/071: Total Pe	troleum Hydrocarbor	ns (QC Lot: 4400437)							
EM2211061-001	BH01 - 0.1	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.0	No Limit
EM2211061-031	BH09 - 0.5	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.0	No Limit
EP080/071: Total Pe	troleum Hydrocarbor	ns (QC Lot: 4400517)			3 3				
EM2211035-001	Anonymous	EP071-EM: C15 - C28 Fraction		100	mg/kg	4070	3340	19.6	0% - 20%
LW2211000 001	7 thorrymous	EP071-EM: C13 - C2611action		100	mg/kg	2330	2100	10.2	0% - 20%
		EP071-EM: C10 - C14 Fraction		50	mg/kg	100	80	23.7	No Limit
		EP071-EM: C10 - C14 Fraction EP071-EM: C10 - C36 Fraction (sum)		50	mg/kg	6500	5520	16.3	0% - 20%
EM2211156-059	Anonymous	EP071-EM: C10 - C30 Fraction (sum)		100	mg/kg	<100	<100	0.0	No Limit
	,	EP071-EM: C13 - C26 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071-EM: C29 - C30 Fraction		50	mg/kg	<50	<50	0.0	No Limit
		EP071-EM: C10 - C14 Fraction EP071-EM: C10 - C36 Fraction (sum)		50	mg/kg	<50	<50	0.0	No Limit
ED090/071: Total Da	troleum Hydrocarbor				9/1/9	-500	-00	3.0	140 Ellilli
				100	ma/ka	2000	2150	7.4	00/ 200/
EM2211061-033	BH09 - 0.1	EP071: C15 - C28 Fraction		100	mg/kg	2000	2150	7.4	0% - 20%

Page : 13 of 32 Work Order : EM2211061

Client : EDGE GROUP PTY LTD

Sub-Matrix: SOIL							Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%
		s (QC Lot: 4400533) - continued							
EM2211061-033	BH09 - 0.1	EP071: C29 - C36 Fraction		100	mg/kg	1160	1240	6.0	0% - 50%
		EP071: C10 - C14 Fraction		50	mg/kg	130	150	13.5	No Limit
		EP071: C10 - C36 Fraction (sum)		50	mg/kg	3290	3540	7.3	0% - 20%
EM2211061-001	BH01 - 0.1	EP071: C15 - C28 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: C29 - C36 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.0	No Limit
		EP071: C10 - C36 Fraction (sum)		50	mg/kg	<50	<50	0.0	No Limit
EP080/071: Total Pe	troleum Hydrocarbon	ns (QC Lot: 4403549)							
EM2210115-103	Anonymous	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.0	No Limit
EP080/071: Total Pe	troleum Hydrocarbon	ns (QC Lot: 4403572)							
EM2211061-026	SP07	EP071: C15 - C28 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: C29 - C36 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.0	No Limit
		EP071: C10 - C36 Fraction (sum)		50	mg/kg	<50	<50	0.0	No Limit
EP080/071: Total Re	coverable Hydrocarb	ons - NEPM 2013 Fractions (QC Lot: 4400434)			99				
EM2210946-002	Anonymous		C6 C10	10	ma/ka	<10	<10	0.0	No Limit
_1012210940-002	Anonymous	EP074-UT: C6 - C10 Fraction	C6 C10-BTEX	10	mg/kg mg/kg	<10	<10	0.0	No Limit
		EP074-UT: C6 - C10 Fraction minus BTEX (F1)	CO_CTO-BTEX	10	ilig/kg	<10	~10	0.0	INO LIITIIL
		ons - NEPM 2013 Fractions (QC Lot: 4400437)							
EM2211061-001	BH01 - 0.1	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	0.0	No Limit
EM2211061-031	BH09 - 0.5	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	0.0	No Limit
EP080/071: Total Re	coverable Hydrocarb	ons - NEPM 2013 Fractions (QC Lot: 4400517)							
EM2211035-001	Anonymous	EP071-EM: >C16 - C34 Fraction		100	mg/kg	5890	4990	16.5	0% - 20%
		EP071-EM: >C34 - C40 Fraction		100	mg/kg	1160	1100	5.1	0% - 50%
		EP071-EM: >C10 - C16 Fraction		50	mg/kg	200	150	25.4	No Limit
		EP071-EM: >C10 - C40 Fraction (sum)		50	mg/kg	7250	6240	15.0	0% - 20%
EM2211156-059	Anonymous	EP071-EM: >C16 - C34 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071-EM: >C34 - C40 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071-EM: >C10 - C16 Fraction		50	mg/kg	<50	<50	0.0	No Limit
		EP071-EM: >C10 - C40 Fraction (sum)		50	mg/kg	<50	<50	0.0	No Limit
EP080/071: Total Re	coverable Hydrocarb	ons - NEPM 2013 Fractions (QC Lot: 4400533)							
EM2211061-033	BH09 - 0.1	EP071: >C16 - C34 Fraction		100	mg/kg	2800	2990	6.5	0% - 20%
		EP071: >C34 - C40 Fraction		100	mg/kg	320	350	8.3	No Limit
		EP071: >C10 - C16 Fraction		50	mg/kg	420	470	10.9	No Limit
		EP071: >C10 - C40 Fraction (sum)		50	mg/kg	3540	3810	7.3	0% - 20%
EM2211061-001	BH01 - 0.1	EP071: >C16 - C34 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: >C34 - C40 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: >C10 - C16 Fraction		50	mg/kg	<50	<50	0.0	No Limit
		EP071: >C10 - C40 Fraction (sum)		50	mg/kg	<50	<50	0.0	No Limit

Page : 14 of 32 Work Order : EM2211061

Client : EDGE GROUP PTY LTD

Sub-Matrix: SOIL						Laboratory	t		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EP080/071: Total Re	ecoverable Hydrocart	bons - NEPM 2013 Fractions (QC Lot: 4403549) - co	ntinued						
EM2210115-103	Anonymous	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	18	18	0.0	No Limit
EP080/071: Total Re	ecoverable Hydrocarl	bons - NEPM 2013 Fractions (QC Lot: 4403572)							
EM2211061-026	SP07	EP071: >C16 - C34 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: >C34 - C40 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: >C10 - C16 Fraction		50	mg/kg	<50	<50	0.0	No Limit
		EP071: >C10 - C40 Fraction (sum)		50	mg/kg	<50	<50	0.0	No Limit
EP080: BTEXN (QC	Lot: 4400437)								
EM2211061-001	BH01 - 0.1	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.0	No Limit
EM2211061-031	BH09 - 0.5	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.0	No Limit
EP080: BTEXN (QC	Lot: 4403549)	Zi SSS Hapitalisis							
EM2210115-103	Anonymous	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
	, , , , , ,	EP080: Toluene	108-88-3	0.5	mg/kg	3.2	3.2	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	0.7	0.7	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	1.7	1.8	0.0	No Limit
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	0.8	0.8	0.0	No Limit
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.0	No Limit
EP202A: Phenoxya	cetic Acid Herbicides	by LCMS (QC Lot: 4404347)							
EM2210264-004	Anonymous	EP202: 4-Chlorophenoxy acetic acid	122-88-3	0.02	mg/kg	<0.02	<0.02	0.0	No Limit
		EP202: 2.4-DB	94-82-6	0.02	mg/kg	<0.02	<0.02	0.0	No Limit
		EP202: Dicamba	1918-00-9	0.02	mg/kg	<0.02	<0.02	0.0	No Limit
		EP202: Mecoprop	93-65-2	0.02	mg/kg	<0.02	<0.02	0.0	No Limit
		EP202: MCPA	94-74-6	0.02	mg/kg	<0.02	<0.02	0.0	No Limit
		EP202: 2.4-DP	120-36-5	0.02	mg/kg	<0.02	<0.02	0.0	No Limit
		EP202: 2.4-D	94-75-7	0.02	mg/kg	<0.02	<0.02	0.0	No Limit
		EP202: Triclopyr	55335-06-3	0.02	mg/kg	<0.02	<0.02	0.0	No Limit
		EP202: 2.4.5-TP (Silvex)	93-72-1	0.02	mg/kg	<0.02	<0.02	0.0	No Limit
		EP202: 2.4.5-T	93-76-5	0.02	mg/kg	<0.02	<0.02	0.0	No Limit

Page : 15 of 32 Work Order : EM2211061

Client : EDGE GROUP PTY LTD

ub-Matrix: SOIL							Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%
P202A: Phenoxya	cetic Acid Herbicides	by LCMS (QC Lot: 4404347) - continued							
EM2210264-004	Anonymous	EP202: MCPB	94-81-5	0.02	mg/kg	<0.02	<0.02	0.0	No Limit
		EP202: Picloram	1918-02-1	0.02	mg/kg	<0.02	<0.02	0.0	No Limit
		EP202: Clopyralid	1702-17-6	0.02	mg/kg	<0.02	<0.02	0.0	No Limit
		EP202: Fluroxypyr	69377-81-7	0.02	mg/kg	<0.02	<0.02	0.0	No Limit
ub-Matrix: WATER						Laboratory	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%
G020T: Total Meta	als by ICP-MS (QC Lot								
M2210986-003	Anonymous	EG020A-T: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.0003	86.1	No Limit
	,	EG020A-T: Arsenic	7440-38-2	0.001	mg/L	0.001	0.003	87.3	No Limit
		EG020A-T: Beryllium	7440-41-7	0.001	mg/L	<0.001	0.002	0.0	No Limit
		EG020A-T: Barium	7440-39-3	0.001	mg/L	0.053	0.055	5.0	0% - 20%
		EG020A-T: Chromium	7440-47-3	0.001	mg/L	0.005	0.006	0.0	No Limit
		EG020A-T: Cobalt	7440-48-4	0.001	mg/L	0.009	0.013	40.3	0% - 50%
		EG020A-T: Copper	7440-50-8	0.001	mg/L	0.010	0.015	36.1	0% - 50%
		EG020A-T: Lead	7439-92-1	0.001	mg/L	0.004	0.006	41.6	No Limit
		EG020A-T: Manganese	7439-96-5	0.001	mg/L	0.278	0.281	0.9	0% - 20%
		EG020A-T: Nickel	7440-02-0	0.001	mg/L	0.013	0.014	8.8	0% - 50%
		EG020A-T: Zinc	7440-66-6	0.005	mg/L	0.024	0.034	34.1	No Limit
		EG020A-T: Selenium	7782-49-2	0.01	mg/L	<0.01	<0.01	0.0	No Limit
		EG020A-T: Vanadium	7440-62-2	0.01	mg/L	0.02	0.03	47.2	No Limit
		EG020A-T: Boron	7440-42-8	0.05	mg/L	<0.05	<0.05	0.0	No Limit
M2211053-018	Anonymous	EG020A-T: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
	-	EG020A-T: Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-T: Beryllium	7440-41-7	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-T: Barium	7440-39-3	0.001	mg/L	<0.001	0.001	0.0	No Limit
		EG020A-T: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-T: Cobalt	7440-48-4	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-T: Copper	7440-50-8	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-T: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-T: Manganese	7439-96-5	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-T: Nickel	7440-02-0	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-T: Zinc	7440-66-6	0.005	mg/L	<0.005	<0.005	0.0	No Limit
		EG020A-T: Selenium	7782-49-2	0.01	mg/L	<0.01	<0.01	0.0	No Limit
		EG020A-T: Vanadium	7440-62-2	0.01	mg/L	<0.01	<0.01	0.0	No Limit
		EG020A-T: Boron	7440-42-8	0.05	mg/L	<0.05	<0.05	0.0	No Limit
G035T: Total Rec	overable Mercury by F	FIMS (QC Lot: 4398048)							1
M2210631-038	Anonymous	EG035T: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
EM2210955-016	Anonymous	EG035T: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit

Page : 16 of 32 Work Order : EM2211061

Client : EDGE GROUP PTY LTD

Sub-Matrix: WATER						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EP080/071: Total Pe	troleum Hydrocarboi	ns (QC Lot: 4394056) - continued							
EB2216475-001	Anonymous	EP080: C6 - C9 Fraction		20	μg/L	<20	<20	0.0	No Limit
EM2210827-034	Anonymous	EP080: C6 - C9 Fraction		20	μg/L	<20	<20	0.0	No Limit
EP080/071: Total Re	ecoverable Hydrocark	ons - NEPM 2013 Fractions (QC Lot: 4394056)							
EB2216475-001	Anonymous	EP080: C6 - C10 Fraction	C6_C10	20	μg/L	<20	<20	0.0	No Limit
EM2210827-034	Anonymous	EP080: C6 - C10 Fraction	C6_C10	20	μg/L	<20	<20	0.0	No Limit
EP080: BTEXN (QC	Lot: 4394056)								
EB2216475-001	Anonymous	EP080: Benzene	71-43-2	1	μg/L	<1	<1	0.0	No Limit
		EP080: Toluene	108-88-3	2	μg/L	<2	<2	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	2	μg/L	<2	<2	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3	2	μg/L	<2	<2	0.0	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	2	μg/L	<2	<2	0.0	No Limit
		EP080: Naphthalene	91-20-3	5	μg/L	<5	<5	0.0	No Limit
EM2210827-034	Anonymous	EP080: Benzene	71-43-2	1	μg/L	<1	<1	0.0	No Limit
		EP080: Toluene	108-88-3	2	μg/L	<2	<2	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	2	μg/L	<2	<2	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3	2	μg/L	<2	<2	0.0	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	2	μg/L	<2	<2	0.0	No Limit
		EP080: Naphthalene	91-20-3	5	μg/L	<5	<5	0.0	No Limit

Page : 17 of 32 Work Order : EM2211061

Client : EDGE GROUP PTY LTD

Project : 20220134

Method Blank (MB) and Laboratory Control Sample (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LCS	S) Report	
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EG005(ED093)T: Total Metals by ICP-AES (QCLot: 4400	0651)							
EG005T: Arsenic	7440-38-2	5	mg/kg	<5	123 mg/kg	97.2	70.0	130
EG005T: Barium	7440-39-3	10	mg/kg	<10	99.3 mg/kg	90.0	70.0	130
EG005T: Beryllium	7440-41-7	1	mg/kg	<1	0.67 mg/kg	94.1	70.0	130
EG005T: Boron	7440-42-8	50	mg/kg	<50				
EG005T: Cadmium	7440-43-9	1	mg/kg	<1	1.23 mg/kg	119	50.0	130
EG005T: Chromium	7440-47-3	2	mg/kg	<2	20.2 mg/kg	89.9	70.0	130
EG005T: Cobalt	7440-48-4	2	mg/kg	<2	11.2 mg/kg	91.0	70.0	130
EG005T: Copper	7440-50-8	5	mg/kg	<5	55.9 mg/kg	87.4	70.0	130
EG005T: Iron	7439-89-6	50	mg/kg	<50	33227 mg/kg	98.6	70.0	130
EG005T: Lead	7439-92-1	5	mg/kg	<5	62.4 mg/kg	89.8	70.0	130
EG005T: Manganese	7439-96-5	5	mg/kg	<5	590 mg/kg	87.8	70.0	130
EG005T: Molybdenum	7439-98-7	2	mg/kg	<2	2.19 mg/kg	79.1	70.0	130
EG005T: Nickel	7440-02-0	2	mg/kg	<2	15.4 mg/kg	92.0	70.0	130
EG005T: Selenium	7782-49-2	5	mg/kg	<5				
EG005T: Silver	7440-22-4	2	mg/kg	<2	2.9 mg/kg	70.4	70.0	130
EG005T: Tin	7440-31-5	5	mg/kg	<5	5.33 mg/kg	93.9	70.0	130
EG005T: Vanadium	7440-62-2	5	mg/kg	<5	61.3 mg/kg	89.3	70.0	130
EG005T: Zinc	7440-66-6	5	mg/kg	<5	162 mg/kg	73.5	70.0	130
EG005(ED093)T: Total Metals by ICP-AES (QCLot: 4400	0652)							
EG005T: Arsenic	7440-38-2	5	mg/kg	<5	123 mg/kg	101	70.0	130
EG005T: Barium	7440-39-3	10	mg/kg	<10	99.3 mg/kg	90.4	70.0	130
EG005T: Beryllium	7440-41-7	1	mg/kg	<1	0.67 mg/kg	94.3	70.0	130
EG005T: Boron	7440-42-8	50	mg/kg	<50				
EG005T: Cadmium	7440-43-9	1	mg/kg	<1	1.23 mg/kg	115	50.0	130
EG005T: Chromium	7440-47-3	2	mg/kg	<2	20.2 mg/kg	92.5	70.0	130
EG005T: Cobalt	7440-48-4	2	mg/kg	<2	11.2 mg/kg	95.5	70.0	130
EG005T: Copper	7440-50-8	5	mg/kg	<5	55.9 mg/kg	87.9	70.0	130
EG005T: Iron	7439-89-6	50	mg/kg	<50	33227 mg/kg	102	70.0	130
EG005T: Lead	7439-92-1	5	mg/kg	<5	62.4 mg/kg	92.9	70.0	130
EG005T: Manganese	7439-96-5	5	mg/kg	<5	590 mg/kg	91.0	70.0	130
EG005T: Molybdenum	7439-98-7	2	mg/kg	<2	2.19 mg/kg	71.0	70.0	130
EG005T: Nickel	7440-02-0	2	mg/kg	<2	15.4 mg/kg	94.6	70.0	130
EG005T: Selenium	7782-49-2	5	mg/kg	<5				
EG005T: Silver	7440-22-4	2	mg/kg	<2	2.9 mg/kg	82.4	70.0	130

Page : 18 of 32 Work Order : EM2211061

Client : EDGE GROUP PTY LTD

Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LC	S) Report	port	
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EG005(ED093)T: Total Metals by ICP-AES (QCLot: 4400652) - continued								
EG005T: Tin	7440-31-5	5	mg/kg	<5	5.33 mg/kg	87.0	70.0	130	
EG005T: Vanadium	7440-62-2	5	mg/kg	<5	61.3 mg/kg	91.8	70.0	130	
EG005T: Zinc	7440-66-6	5	mg/kg	<5	162 mg/kg	76.9	70.0	130	
EA001: pH in soil using 0.01M CaCl extract (QCLot: 440065	66)								
EA001: pH (CaCl2)			pH Unit		4 pH Unit	101	98.8	101	
					7 pH Unit	100	99.3	101	
EA002-AD: pH (Soils) dried at 40°C (QCLot: 4403502)									
EA002-AD: pH Value			pH Unit		4 pH Unit	100	98.8	101	
					7 pH Unit	100	99.3	101	
EA010-AD: Conductivity (Soils) dried at 40°C (QCLot: 4403	501)								
EA010-AD: Electrical Conductivity @ 25°C		1	μS/cm	<1	1413 μS/cm	99.8	90.0	110	
ED006: Exchangeable Cations on Alkaline Soils (QCLot: 44	103505)								
ED006: Exchangeable Calcium		0.2	meq/100g	<0.2	33 meg/100g	86.7	66.6	101	
ED006: Exchangeable Magnesium		0.2	meq/100g	<0.2	32 meq/100g	79.3	66.9	120	
ED006: Exchangeable Potassium		0.2	meq/100g	<0.2	2.2 meq/100g	92.6	72.8	119	
ED006: Exchangeable Sodium		0.2	meq/100g	<0.2	5.6 meq/100g	96.9	67.5	112	
ED006: Cation Exchange Capacity		0.2	meq/100g	<0.2					
ED006: Exchangeable Calcium Percent		0.2	%	<0.2					
ED006: Exchangeable Magnesium Percent		0.2	%	<0.2					
ED006: Exchangeable Potassium Percent		0.2	%	<0.2					
ED006: Exchangeable Sodium Percent		0.2	%	<0.2					
ED006: Calcium/Magnesium Ratio		0.1	-	<0.1					
ED006: Magnesium/Potassium Ratio		0.1	-	<0.1					
EG035T: Total Recoverable Mercury by FIMS (QCLot: 4400	0650)								
EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	0.64 mg/kg	87.5	70.0	130	
EG035T: Total Recoverable Mercury by FIMS (QCLot: 4400	0653)								
EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	0.64 mg/kg	82.8	70.0	130	
EG048: Hexavalent Chromium (Alkaline Digest) (QCLot: 44	00826)								
EG048G: Hexavalent Chromium	18540-29-9	0.5	mg/kg	<0.5	20 mg/kg	80.3	70.0	130	
EK026SF: Total CN by Segmented Flow Analyser (QCLot:	4403123)				5 5				
EK026SF: Total Cvanide	57-12-5	1	mg/kg	<1	20 mg/kg	84.2	70.0	130	
						=	. 3.0		
EK028SF: Weak Acid Dissociable CN by Segmented Flow A EK028SF: Weak Acid Dissociable Cyanide	Analyser (QCL)	ot: 4403126) 1	mg/kg	<1	20 mg/kg	81.9	70.0	130	
	_		1119/119	11	20 mg/ng	01.0	70.0	100	
EK040T: Fluoride Total (QCLot: 4400820)	16984-48-8	40	ma/ka	<40	400 mg/kg	78.4	75.2	110	
EK040T: Fluoride	10904-40-0	4 0	mg/kg	\4 U	400 mg/kg	10.4	13.2	110	
EP004: Organic Matter (QCLot: 4405872)		0.5	0,	-0.5	77.0/	00.1	70.0	400	
EP004: Organic Matter		0.5	%	<0.5	77 %	90.4	70.0	130	

Page : 19 of 32 Work Order : EM2211061

Client : EDGE GROUP PTY LTD

Sub-Matrix: SOIL				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EP004: Organic Matter (QCLot: 4405872) - continue	ed								
EP004: Total Organic Carbon		0.5	%	<0.5	43.5 %	92.9	70.0	130	
EP066: Polychlorinated Biphenyls (PCB) (QCLot: 44	400518)								
EP066-EM: Total Polychlorinated biphenyls		0.1	mg/kg	<0.1	1 mg/kg	109	67.4	136	
EP066: Polychlorinated Biphenyls (PCB) (QCLot: 44	400532)								
EP066: Total Polychlorinated biphenyls		0.1	mg/kg	<0.1	1 mg/kg	89.7	68.0	133	
EP068A: Organochlorine Pesticides (OC) (QCLot: 4	400531)								
EP068: alpha-BHC	319-84-6	0.05	mg/kg	<0.05	0.5 mg/kg	79.0	71.8	126	
EP068: Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	0.5 mg/kg	80.4	72.2	125	
EP068: beta-BHC	319-85-7	0.05	mg/kg	<0.05	0.5 mg/kg	82.5	70.0	124	
EP068: gamma-BHC	58-89-9	0.05	mg/kg	<0.05	0.5 mg/kg	79.0	69.1	124	
EP068: delta-BHC	319-86-8	0.05	mg/kg	<0.05	0.5 mg/kg	80.5	69.2	125	
EP068: Heptachlor	76-44-8	0.05	mg/kg	<0.05	0.5 mg/kg	77.4	66.6	122	
EP068: Aldrin	309-00-2	0.05	mg/kg	<0.05	0.5 mg/kg	80.2	68.8	123	
EP068: Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	0.5 mg/kg	82.8	67.2	124	
EP068: trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	0.5 mg/kg	85.4	66.0	126	
EP068: alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	0.5 mg/kg	82.0	70.2	126	
EP068: cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	0.5 mg/kg	83.3	72.1	124	
EP068: Dieldrin	60-57-1	0.05	mg/kg	<0.05	0.5 mg/kg	80.4	68.0	122	
EP068: 4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	0.5 mg/kg	82.9	68.9	124	
EP068: Endrin	72-20-8	0.05	mg/kg	<0.05	0.5 mg/kg	71.1	55.8	130	
EP068: beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	0.5 mg/kg	86.4	67.9	124	
EP068: 4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	0.5 mg/kg	77.9	72.0	127	
EP068: Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	0.5 mg/kg	96.4	66.3	131	
EP068: Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	0.5 mg/kg	95.1	62.4	131	
EP068: 4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	0.5 mg/kg	88.2	55.4	130	
EP068: Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	0.5 mg/kg	98.3	68.8	128	
EP068: Methoxychlor	72-43-5	0.2	mg/kg	<0.2	0.5 mg/kg	86.8	55.5	132	
EP068: Mirex	2385-85-5	0.05	mg/kg	<0.05	0.5 mg/kg	97.2	92.4	102	
EP068B: Organophosphorus Pesticides (OP) (QCLo	ot: 4400531)								
EP068: Dichlorvos	62-73-7	0.05	mg/kg	<0.05	0.5 mg/kg	97.4	65.6	127	
EP068: Demeton-S-methyl	919-86-8	0.05	mg/kg	<0.05	0.5 mg/kg	78.4	63.0	129	
EP068: Monocrotophos	6923-22-4	0.2	mg/kg	<0.2	0.5 mg/kg	53.4	10.0	136	
EP068: Dimethoate	60-51-5	0.05	mg/kg	<0.05	0.5 mg/kg	77.4	58.3	128	
EP068: Diazinon	333-41-5	0.05	mg/kg	<0.05	0.5 mg/kg	81.0	69.0	122	
EP068: Chlorpyrifos-methyl	5598-13-0	0.05	mg/kg	<0.05	0.5 mg/kg	76.8	68.0	122	
EP068: Parathion-methyl	298-00-0	0.2	mg/kg	<0.2	0.5 mg/kg	73.8	59.6	124	
EP068: Malathion	121-75-5	0.05	mg/kg	<0.05	0.5 mg/kg	78.6	63.8	128	
EP068: Fenthion	55-38-9	0.05	mg/kg	<0.05	0.5 mg/kg	79.6	71.1	124	

Page : 20 of 32 Work Order : EM2211061

Client : EDGE GROUP PTY LTD

Sub-Matrix: SOIL				Method Blank (MB)	Laboratory Control Spike (LCS) Report			
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP068B: Organophosphorus Pesticides (OP) (QCLo	t: 4400531) - continue	d						
EP068: Chlorpyrifos	2921-88-2	0.05	mg/kg	<0.05	0.5 mg/kg	81.8	67.4	126
EP068: Parathion	56-38-2	0.2	mg/kg	<0.2	0.5 mg/kg	70.0	57.9	122
EP068: Pirimphos-ethyl	23505-41-1	0.05	mg/kg	<0.05	0.5 mg/kg	82.4	66.2	123
EP068: Chlorfenvinphos	470-90-6	0.05	mg/kg	<0.05	0.5 mg/kg	64.1	59.8	123
EP068: Bromophos-ethyl	4824-78-6	0.05	mg/kg	<0.05	0.5 mg/kg	80.0	65.4	127
EP068: Fenamiphos	22224-92-6	0.05	mg/kg	<0.05	0.5 mg/kg	59.6	52.1	128
EP068: Prothiofos	34643-46-4	0.05	mg/kg	<0.05	0.5 mg/kg	79.1	65.2	122
EP068: Ethion	563-12-2	0.05	mg/kg	<0.05	0.5 mg/kg	69.8	63.2	124
EP068: Carbophenothion	786-19-6	0.05	mg/kg	<0.05	0.5 mg/kg	92.5	65.9	127
EP068: Azinphos Methyl	86-50-0	0.05	mg/kg	<0.05	0.5 mg/kg	130	43.1	131
EP068C: Triazines (QCLot: 4400531)								
EP068: Atrazine	1912-24-9	0.05	mg/kg	<0.05	0.5 mg/kg	78.0	72.5	126
EP068D: Pyrethroids (QCLot: 4400531)								
EP068: Bifenthrin	82657-04-3	0.05	mg/kg	<0.05	0.5 mg/kg	94.4	67.9	128
EP069: Toxaphene (QCLot: 4400534)								
EP069: Toxaphene	8001-35-2	2	mg/kg	<2	10 mg/kg	66.6	64.0	132
EP074A: Monocyclic Aromatic Hydrocarbons (QCLo	t: 4400434)							
EP074-UT: Benzene	71-43-2	0.2	mg/kg	<0.2	2.1 mg/kg	89.5	69.2	116
EP074-UT: Toluene	108-88-3	0.5	mg/kg	<0.5	2.1 mg/kg	90.4	67.7	116
EP074-UT: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	2.1 mg/kg	89.6	66.6	115
EP074-UT: meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	4.2 mg/kg	86.4	65.2	112
EP074-UT: Styrene	100-42-5	0.5	mg/kg	<0.5	2.1 mg/kg	88.7	69.4	111
EP074-UT: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	2.1 mg/kg	88.1	68.4	110
EP074H: Naphthalene (QCLot: 4400434)								
EP074-UT: Naphthalene	91-20-3	1	mg/kg	<1	0.6 mg/kg	82.9	72.3	114
EP074I: Volatile Halogenated Compounds (QCLot: 4	400434)							
EP074-UT: Vinyl chloride	75-01-4	0.02	mg/kg	<0.02	0.1 mg/kg	82.9	47.0	138
EP074-UT: 1.1-Dichloroethene	75-35-4	0.01	mg/kg	<0.01	0.1 mg/kg	90.4	57.6	125
EP074-UT: Methylene chloride	75-09-2	0.4	mg/kg	<0.4	2.1 mg/kg	97.7	72.3	115
EP074-UT: trans-1.2-Dichloroethene	156-60-5	0.02	mg/kg	<0.02	0.1 mg/kg	93.8	60.5	122
EP074-UT: cis-1.2-Dichloroethene	156-59-2	0.01	mg/kg	<0.01	0.1 mg/kg	90.4	70.3	112
EP074-UT: Chloroform	67-66-3	0.02	mg/kg	<0.02	0.1 mg/kg	93.0	66.6	115
EP074-UT: 1.1.1-Trichloroethane	71-55-6	0.01	mg/kg	<0.01	0.1 mg/kg	88.8	64.4	122
EP074-UT: Carbon Tetrachloride	56-23-5	0.01	mg/kg	<0.01	0.1 mg/kg	88.0	58.4	127
EP074-UT: 1.2-Dichloroethane	107-06-2	0.02	mg/kg	<0.02	0.1 mg/kg	96.2	72.9	114
EP074-UT: Trichloroethene	79-01-6	0.02	mg/kg	<0.02	0.1 mg/kg	88.8	64.7	115
EP074-UT: 1.1.2-Trichloroethane	79-00-5	0.04	mg/kg	<0.04	0.1 mg/kg	98.8	72.6	116

Page : 21 of 32 Work Order : EM2211061

Client : EDGE GROUP PTY LTD

Sub-Matrix: SOIL				Method Blank (MB)	Laboratory Control Spike (LCS) Report			
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP074I: Volatile Halogenated Compounds (QCLot: 4	400434) - continued							
EP074-UT: Tetrachloroethene	127-18-4	0.02	mg/kg	<0.02	0.1 mg/kg	87.1	60.0	119
EP074-UT: 1.1.1.2-Tetrachloroethane	630-20-6	0.01	mg/kg	<0.01	0.1 mg/kg	89.7	71.8	116
EP074-UT: 1.1.2.2-Tetrachloroethane	79-34-5	0.02	mg/kg	<0.02	0.1 mg/kg	93.2	66.1	116
EP074-UT: Hexachlorobutadiene	87-68-3	0.02	mg/kg	<0.02	0.1 mg/kg	87.8	39.8	128
EP074-UT: Chlorobenzene	108-90-7	0.02	mg/kg	<0.02	0.1 mg/kg	91.2	70.3	113
EP074-UT: 1.4-Dichlorobenzene	106-46-7	0.02	mg/kg	<0.02	0.1 mg/kg	83.8	62.6	113
EP074-UT: 1.2-Dichlorobenzene	95-50-1	0.02	mg/kg	<0.02	0.1 mg/kg	90.6	70.8	110
EP074-UT: 1.2.4-Trichlorobenzene	120-82-1	0.01	mg/kg	<0.01	0.1 mg/kg	83.9	48.4	120
EP075(SIM)A: Phenolic Compounds (QCLot: 440053	5)							
EP075(SIM): Phenol	108-95-2	0.5	mg/kg	<0.5	3 mg/kg	92.0	81.2	121
EP075(SIM): 2-Chlorophenol	95-57-8	0.5	mg/kg	<0.5	3 mg/kg	95.2	83.2	120
EP075(SIM): 2-Methylphenol	95-48-7	0.5	mg/kg	<0.5	3 mg/kg	95.7	81.6	123
EP075(SIM): 3- & 4-Methylphenol	1319-77-3	1	mg/kg	<1	6 mg/kg	97.4	79.7	129
EP075(SIM): 2-Nitrophenol	88-75-5	0.5	mg/kg	<0.5	3 mg/kg	92.2	49.8	129
EP075(SIM): 2.4-Dimethylphenol	105-67-9	0.5	mg/kg	<0.5	3 mg/kg	95.0	81.5	127
EP075(SIM): 2.4-Dichlorophenol	120-83-2	0.5	mg/kg	<0.5	3 mg/kg	101	74.2	125
EP075(SIM): 2.6-Dichlorophenol	87-65-0	0.5	mg/kg	<0.5	3 mg/kg	96.5	79.8	121
EP075(SIM): 4-Chloro-3-methylphenol	59-50-7	0.5	mg/kg	<0.5	3 mg/kg	82.8	71.5	121
EP075(SIM): 2.4.6-Trichlorophenol	88-06-2	0.5	mg/kg	<0.5	3 mg/kg	88.5	67.8	119
EP075(SIM): 2.4.5-Trichlorophenol	95-95-4	0.5	mg/kg	<0.5	3 mg/kg	84.1	64.5	126
EP075(SIM): Pentachlorophenol	87-86-5	2	mg/kg	<2	6 mg/kg	62.2	10.0	118
EP075(SIM)A: Phenolic Compounds (QCLot: 440357	1)							
EP075(SIM): Phenol	108-95-2	0.5	mg/kg	<0.5	3 mg/kg	92.1	81.2	121
EP075(SIM): 2-Chlorophenol	95-57-8	0.5	mg/kg	<0.5	3 mg/kg	89.5	83.2	120
EP075(SIM): 2-Methylphenol	95-48-7	0.5	mg/kg	<0.5	3 mg/kg	90.9	81.6	123
EP075(SIM): 3- & 4-Methylphenol	1319-77-3	1	mg/kg	<1	6 mg/kg	88.4	79.7	129
EP075(SIM): 2-Nitrophenol	88-75-5	0.5	mg/kg	<0.5	3 mg/kg	85.7	49.8	129
EP075(SIM): 2.4-Dimethylphenol	105-67-9	0.5	mg/kg	<0.5	3 mg/kg	89.6	81.5	127
EP075(SIM): 2.4-Dichlorophenol	120-83-2	0.5	mg/kg	<0.5	3 mg/kg	87.0	74.2	125
EP075(SIM): 2.6-Dichlorophenol	87-65-0	0.5	mg/kg	<0.5	3 mg/kg	88.3	79.8	121
EP075(SIM): 4-Chloro-3-methylphenol	59-50-7	0.5	mg/kg	<0.5	3 mg/kg	87.8	71.5	121
EP075(SIM): 2.4.6-Trichlorophenol	88-06-2	0.5	mg/kg	<0.5	3 mg/kg	81.4	67.8	119
EP075(SIM): 2.4.5-Trichlorophenol	95-95-4	0.5	mg/kg	<0.5	3 mg/kg	83.4	64.5	126
EP075(SIM): Pentachlorophenol	87-86-5	2	mg/kg	<2	6 mg/kg	73.8	10.0	118
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons(QCLot: 4400535)							
EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	3 mg/kg	98.8	85.7	123
EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	3 mg/kg	93.3	81.0	123
EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	3 mg/kg	95.2	83.6	120

Page : 22 of 32 Work Order : EM2211061

Client : EDGE GROUP PTY LTD

Sub-Matrix: SOIL			Method Blank (MB)	Laboratory Control Spike (LCS) Report			
			Report	Spike	Spike Recovery (%)	Acceptable	e Limits (%)
Method: Compound CAS Number	r LOR	Unit	Result	Concentration	LCS	Low	High
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (QCLot: 4400535)	continued						
EP075(SIM): Fluorene 86-73-7	0.5	mg/kg	<0.5	3 mg/kg	92.4	81.3	126
EP075(SIM): Phenanthrene 85-01-8	0.5	mg/kg	<0.5	3 mg/kg	96.1	79.4	123
EP075(SIM): Anthracene 120-12-7	0.5	mg/kg	<0.5	3 mg/kg	98.2	81.7	127
EP075(SIM): Fluoranthene 206-44-0	0.5	mg/kg	<0.5	3 mg/kg	96.2	78.3	124
EP075(SIM): Pyrene 129-00-0	0.5	mg/kg	<0.5	3 mg/kg	98.8	79.9	128
EP075(SIM): Benz(a)anthracene 56-55-3	0.5	mg/kg	<0.5	3 mg/kg	92.4	76.9	123
EP075(SIM): Chrysene 218-01-9	0.5	mg/kg	<0.5	3 mg/kg	94.3	80.9	130
EP075(SIM): Benzo(b+j)fluoranthene 205-99-2	0.5	mg/kg	<0.5	3 mg/kg	88.2	70.0	121
205-82-3							
EP075(SIM): Benzo(k)fluoranthene 207-08-9	0.5	mg/kg	<0.5	3 mg/kg	95.7	80.4	130
EP075(SIM): Benzo(a)pyrene 50-32-8	0.5	mg/kg	<0.5	3 mg/kg	85.0	70.2	123
EP075(SIM): Indeno(1.2.3.cd)pyrene 193-39-5	0.5	mg/kg	<0.5	3 mg/kg	78.1	67.9	122
EP075(SIM): Dibenz(a.h)anthracene 53-70-3	0.5	mg/kg	<0.5	3 mg/kg	77.4	65.8	123
EP075(SIM): Benzo(g.h.i)perylene 191-24-2	0.5	mg/kg	<0.5	3 mg/kg	85.2	65.8	127
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (QCLot: 4403571)							
EP075(SIM): Naphthalene 91-20-3	0.5	mg/kg	<0.5	3 mg/kg	93.8	85.7	123
EP075(SIM): Acenaphthylene 208-96-8	0.5	mg/kg	<0.5	3 mg/kg	93.6	81.0	123
EP075(SIM): Acenaphthene 83-32-9	0.5	mg/kg	<0.5	3 mg/kg	94.3	83.6	120
EP075(SIM): Fluorene 86-73-7	0.5	mg/kg	<0.5	3 mg/kg	91.6	81.3	126
EP075(SIM): Phenanthrene 85-01-8	0.5	mg/kg	<0.5	3 mg/kg	94.4	79.4	123
EP075(SIM): Anthracene 120-12-7	0.5	mg/kg	<0.5	3 mg/kg	89.0	81.7	127
EP075(SIM): Fluoranthene 206-44-0	0.5	mg/kg	<0.5	3 mg/kg	89.4	78.3	124
EP075(SIM): Pyrene 129-00-0	0.5	mg/kg	<0.5	3 mg/kg	88.6	79.9	128
EP075(SIM): Benz(a)anthracene 56-55-3	0.5	mg/kg	<0.5	3 mg/kg	93.2	76.9	123
EP075(SIM): Chrysene 218-01-9	0.5	mg/kg	<0.5	3 mg/kg	92.6	80.9	130
EP075(SIM): Benzo(b+j)fluoranthene 205-99-2	0.5	mg/kg	<0.5	3 mg/kg	95.2	70.0	121
205-82-3							
EP075(SIM): Benzo(k)fluoranthene 207-08-9	0.5	mg/kg	<0.5	3 mg/kg	91.5	80.4	130
EP075(SIM): Benzo(a)pyrene 50-32-8	0.5	mg/kg	<0.5	3 mg/kg	90.3	70.2	123
EP075(SIM): Indeno(1.2.3.cd)pyrene 193-39-5	0.5	mg/kg	<0.5	3 mg/kg	85.2	67.9	122
EP075(SIM): Dibenz(a.h)anthracene 53-70-3	0.5	mg/kg	<0.5	3 mg/kg	84.9	65.8	123
EP075(SIM): Benzo(g.h.i)perylene 191-24-2	0.5	mg/kg	<0.5	3 mg/kg	85.6	65.8	127
EP075A: Phenolic Compounds (Halogenated) (QCLot: 4400516)							
EP075-EM: 2-Chlorophenol 95-57-8	0.03	mg/kg	<0.03	1 mg/kg	111	74.5	126
EP075-EM: 2.4-Dichlorophenol	0.03	mg/kg	<0.03	1 mg/kg	102	72.7	126
EP075-EM: 2.6-Dichlorophenol 87-65-0	0.03	mg/kg	<0.03	1 mg/kg	104	73.5	132
EP075-EM: 4-Chloro-3-methylphenol 59-50-7	0.03	mg/kg	<0.03	1 mg/kg	102	72.8	128
EP075-EM: 2.4.5-Trichlorophenol 95-95-4	0.05	mg/kg	<0.05	1 mg/kg	100	73.3	134
EP075-EM: 2.4.6-Trichlorophenol 88-06-2	0.05	mg/kg	<0.05	1 mg/kg	103	72.4	128

Page : 23 of 32 Work Order : EM2211061

Client : EDGE GROUP PTY LTD

Sub-Matrix: SOIL				Method Blank (MB)	Laboratory Control Spike (LCS) Report			
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP075A: Phenolic Compounds (Halogenated) (QCL	Lot: 4400516) - continue	d						
EP075-EM: 2.3.5.6-Tetrachlorophenol	935-95-5	0.03	mg/kg	<0.03	1 mg/kg	98.4	69.4	126
EP075-EM: 2.3.4.5 & 2.3.4.6-Tetrachlorophenol	4901-51-3/5	0.05	mg/kg	<0.05	2 mg/kg	100	71.9	128
	8-90-2							
EP075-EM: Pentachlorophenol	87-86-5	0.2	mg/kg	<0.2	2 mg/kg	86.5	54.4	135
EP075A: Phenolic Compounds (Non-halogenated)	(QCLot: 4400516)							
EP075-EM: Phenol	108-95-2	1	mg/kg	<1	1 mg/kg	116	71.5	130
EP075-EM: 2-Methylphenol	95-48-7	1	mg/kg	<1	1 mg/kg	113	73.4	129
EP075-EM: 3- & 4-Methylphenol	1319-77-3	1	mg/kg	<1	2 mg/kg	108	74.3	129
EP075-EM: 2-Nitrophenol	88-75-5	1	mg/kg	<1	1 mg/kg	102	70.9	133
EP075-EM: 2.4-Dimethylphenol	105-67-9	1	mg/kg	<1	1 mg/kg	104	71.8	132
EP075-EM: 2.4-Dinitrophenol	51-28-5	5	mg/kg	<5	10 mg/kg	99.0	41.0	156
EP075-EM: 4-Nitrophenol	100-02-7	5	mg/kg	<5	10 mg/kg	108	65.3	134
EP075-EM: 2-Methyl-4.6-dinitrophenol	8071-51-0	5	mg/kg	<5	10 mg/kg	102	43.6	128
EP075-EM: Dinoseb	88-85-7	5	mg/kg	<5	10 mg/kg	102	62.0	128
EP075-EM: 2-Cyclohexyl-4.6-Dinitrophenol	131-89-5	5	mg/kg	<5	10 mg/kg	96.5	34.5	137
EP075B: Polynuclear Aromatic Hydrocarbons (QCI	Lot: 4400516)							
EP075-EM: Naphthalene	91-20-3	0.5	mg/kg	<0.5	1 mg/kg	106	73.0	131
EP075-EM: Acenaphthene	83-32-9	0.5	mg/kg	<0.5	1 mg/kg	106	76.3	130
EP075-EM: Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	1 mg/kg	103	72.0	135
EP075-EM: Fluorene	86-73-7	0.5	mg/kg	<0.5	1 mg/kg	108	74.4	131
EP075-EM: Phenanthrene	85-01-8	0.5	mg/kg	<0.5	1 mg/kg	108	73.3	130
EP075-EM: Anthracene	120-12-7	0.5	mg/kg	<0.5	1 mg/kg	107	78.4	127
EP075-EM: Fluoranthene	206-44-0	0.5	mg/kg	<0.5	1 mg/kg	105	75.3	132
EP075-EM: Pyrene	129-00-0	0.5	mg/kg	<0.5	1 mg/kg	107	75.4	130
EP075-EM: Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	1 mg/kg	109	69.6	133
EP075-EM: Chrysene	218-01-9	0.5	mg/kg	<0.5	1 mg/kg	111	75.0	133
EP075-EM: Benzo(b+j) & Benzo(k)fluoranthene	205-99-2 207-08-9	1	mg/kg	<1.0	2 mg/kg	113	75.8	133
EP075-EM: Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	1 mg/kg	108	65.1	130
EP075-EM: Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	1 mg/kg	108	72.1	134
EP075-EM: Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	1 mg/kg	107	72.9	135
EP075-EM: Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	1 mg/kg	106	71.3	134
EP075l: Organochlorine Pesticides (QCLot: 440051	16)							
EP075-EM: alpha-BHC	319-84-6	0.03	mg/kg	<0.03	1 mg/kg	108	71.0	129
EP075-EM: Hexachlorobenzene (HCB)	118-74-1	0.03	mg/kg	<0.03	1 mg/kg	104	74.8	126
EP075-EM: beta-BHC	319-85-7	0.03	mg/kg	<0.03	1 mg/kg	107	75.7	130
EP075-EM: gamma-BHC	58-89-9	0.03	mg/kg	<0.03	1 mg/kg	108	70.8	130
EP075-EM: delta-BHC	319-86-8	0.03	mg/kg	<0.03	1 mg/kg	110	76.5	134

Page : 24 of 32 Work Order : EM2211061

Client : EDGE GROUP PTY LTD

Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LCS) Report		
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)
Method: Compound CAS	Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP075l: Organochlorine Pesticides (QCLot: 4400516) - continued	d							
EP075-EM: Heptachlor 7	76-44-8	0.03	mg/kg	<0.03	1 mg/kg	102	75.5	131
EP075-EM: Aldrin 30	09-00-2	0.03	mg/kg	<0.03	1 mg/kg	106	76.8	130
EP075-EM: Heptachlor epoxide 102	24-57-3	0.03	mg/kg	<0.03	1 mg/kg	105	73.6	130
EP075-EM: cis-Chlordane 510)3-71-9	0.03	mg/kg	<0.03	1 mg/kg	101	75.0	133
EP075-EM: trans-Chlordane 510)3-74-2	0.03	mg/kg	<0.03	1 mg/kg	102	75.3	131
EP075-EM: Endosulfan 1 95	59-98-8	0.03	mg/kg	<0.03	1 mg/kg	107	69.4	134
EP075-EM: 4.4`-DDE 7	72-55-9	0.05	mg/kg	<0.05	1 mg/kg	107	71.0	132
EP075-EM: Dieldrin 6	60-57-1	0.03	mg/kg	<0.03	1 mg/kg	108	78.0	133
EP075-EM: Endrin aldehyde 742	21-93-4	0.03	mg/kg	<0.03	1 mg/kg	82.8	69.0	143
EP075-EM: Endrin 7	72-20-8	0.03	mg/kg	<0.03	1 mg/kg	116	55.7	145
EP075-EM: Endosulfan 2 3321	13-65-9	0.03	mg/kg	<0.03	1 mg/kg	109	71.4	135
EP075-EM: 4.4`-DDD 7	72-54-8	0.05	mg/kg	<0.05	1 mg/kg	108	74.8	134
EP075-EM: Endosulfan sulfate 103	31-07-8	0.03	mg/kg	<0.03	1 mg/kg	110	70.2	135
EP075-EM: 4.4`-DDT 5	50-29-3	0.05	mg/kg	<0.05	1 mg/kg	101	77.7	133
EP075-EM: Methoxychlor 7	72-43-5	0.03	mg/kg	<0.03	1 mg/kg	108	63.6	135
EP080/071: Total Petroleum Hydrocarbons (QCLot: 4400434)								
EP074-UT: C6 - C9 Fraction		10	mg/kg	<10	39.6 mg/kg	97.1	61.1	119
EP080/071: Total Petroleum Hydrocarbons (QCLot: 4400437)								
EP080: C6 - C9 Fraction		10	mg/kg	<10	36 mg/kg	71.3	58.6	131
EP080/071: Total Petroleum Hydrocarbons (QCLot: 4400517)								
EP071-EM: C10 - C14 Fraction		50	mg/kg	<50	670 mg/kg	98.1	74.4	129
EP071-EM: C15 - C28 Fraction		100	mg/kg	<100	2860 mg/kg	96.5	81.0	123
EP071-EM: C29 - C36 Fraction		100	mg/kg	<100	1490 mg/kg	87.6	81.8	121
EP071-EM: C10 - C36 Fraction (sum)		50	mg/kg	<50	5020 mg/kg	94.0	70.0	130
EP080/071: Total Petroleum Hydrocarbons (QCLot: 4400533)					0 0			
EP071: C10 - C14 Fraction		50	mg/kg	<50	670 mg/kg	103	75.0	128
EP071: C15 - C14 Fraction		100	mg/kg	<100	2860 mg/kg	100	82.0	123
EP071: C19 - C26 Fraction		100	mg/kg	<100	1490 mg/kg	91.4	82.4	121
EP071: C10 - C36 Fraction (sum)		50	mg/kg	<50	5020 mg/kg	98.0	70.0	130
			mg/kg	.00	2020 mg/kg	00.0	7 0.0	100
EP080/071: Total Petroleum Hydrocarbons (QCLot: 4403549)		10	ma/ka	<10	36 mg/kg	93.4	58.6	131
EP080: C6 - C9 Fraction		10	mg/kg	<10	30 mg/kg	93.4	36.0	101
EP080/071: Total Petroleum Hydrocarbons (QCLot: 4403572)		50		.50	070 . "	 .	75.0	100
EP071: C10 - C14 Fraction		50	mg/kg	<50	670 mg/kg	77.4	75.0	128
EP071: C15 - C28 Fraction		100	mg/kg	<100	2860 mg/kg	92.3	82.0	123
EP071: C29 - C36 Fraction		100	mg/kg	<100	1490 mg/kg	85.8	82.4	121
EP071: C10 - C36 Fraction (sum)		50	mg/kg	<50	5020 mg/kg	88.4	70.0	130
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fraction								
EP074-UT: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	48.9 mg/kg	97.7	59.9	119

Page : 25 of 32 Work Order : EM2211061

Client : EDGE GROUP PTY LTD

EPB08/071-Total Recoverable Hydrocarbons - NEPM 2013 Fractions (OCLot: 4400437) CREDIT	Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LCS) Report				
### PROBLEM Total Recoverable Hydrocarbons - NEPM 2013 Fractions (Oct.0014400454) - continued ###################################					Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)		
EPO74-LTC-G-C10 Fraction minus BTEX (P1)	Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High		
PP080/071-Total Recoverable Hydrocarbons - NEPM 2013 Fractions CC-Lot 4004371	EP080/071: Total Recoverable Hydrocarbons - NEPI	M 2013 Fractions (QCL	ot: 4400434) - c	ontinued							
EP8800711 Total Recoverable Hydrocarbons - NEPM 2013 Fractions (OCLot: 4400457)	EP074-UT: C6 - C10 Fraction minus BTEX (F1)	-	10	mg/kg	<10						
EPBBBLOF Color Fraction Color	EDOGGICA T. (1 D NED		1 1100107								
PROVIDED Formation Color	•			ma/lea	~10	4E ma/ka	76.4	50.2	120		
ERDY-EMS-C1G-C1G Fraction		_		mg/kg	<10	45 mg/kg	70.1	59.3	128		
EBOYT -EM-2-1G- C-34 Fraction	·	` _	<u> </u>								
EB071-EM2-C24 - C40 Fraction											
EPO71-EM: >C10 - C40 Fraction (sum)	EP071-EM: >C16 - C34 Fraction					<u> </u>					
EP0810/71-170al Recoverable Hydrocarbons - NEPM 2013 Fractions (OCLot: 4400533) CS CS CS CS CS CS CS C	EP071-EM: >C34 - C40 Fraction			mg/kg		250 mg/kg					
EPO71: >C10 - C16 Fraction	EP071-EM: >C10 - C40 Fraction (sum)		50	mg/kg	<50	5020 mg/kg	96.2	70.0	130		
PEPO71: >C-C-34 Fraction	EP080/071: Total Recoverable Hydrocarbons - NEPI	M 2013 Fractions (QCL	ot: 4400533)								
EPO71: >C10 - C40 Fraction (sum)	EP071: >C10 - C16 Fraction		50	mg/kg	<50	1000 mg/kg	102	77.0	130		
EP071:>C10 - C40 Fraction (sum)	EP071: >C16 - C34 Fraction		100	mg/kg	<100	3770 mg/kg	103	81.5	120		
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions (QCLot: 4403549) EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions (QCLot: 4403572) EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions (QCLot: 4403572) EP071: > 50 mg/kg < 50 1000 mg/kg & 33.6 77.0 130 EP071: > C16 - C34 Fraction	EP071: >C34 - C40 Fraction		100	mg/kg	<100	250 mg/kg	99.6	73.3	137		
EP080: C8 - C10 Fraction C6_C10 10 mg/kg <10 45 mg/kg 91.3 59.3 128 EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions (QCLot: 4403572) EP071: > C10 - C16 Fraction	EP071: >C10 - C40 Fraction (sum)		50	mg/kg	<50	5020 mg/kg	102	70.0	130		
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions (OCLot: 4403572) EP071: >C-016 - C16 Fraction 50 mg/kg < 50	EP080/071: Total Recoverable Hydrocarbons - NEPI	M 2013 Fractions (QCL	ot: 4403549)								
EPO71: > C10 - C16 Fraction	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	45 mg/kg	91.3	59.3	128		
Perport Color - Color Fraction 100 mg/kg <100 3770 mg/kg 93.3 81.5 120	EP080/071: Total Recoverable Hydrocarbons - NEPI	M 2013 Fractions (QCL	ot: 4403572)								
EP071: >C34 - C40 Fraction	EP071: >C10 - C16 Fraction		50	mg/kg	<50	1000 mg/kg	83.6	77.0	130		
EP080: BTEXN (QCLot: 4400437) EP080: Benzene 71-43-2 0.2 mg/kg <0.2 2 mg/kg 90.6 70.0 130 EP080: Benzene 71-43-2 0.2 mg/kg <0.5 2 mg/kg 90.3 65.8 125 EP080: Ethylbenzene 100-41-4 0.5 mg/kg <0.5 2 mg/kg 99.3 65.8 124 EP080: ortho-xylene 95-47-6 0.5 mg/kg <0.5 2 mg/kg 95.2 66.8 123 EP080: BTEXN (QCLot: 4403549) EP080: ortho-xylene 95-47-6 0.5 mg/kg <0.5 2 mg/kg 95.2 66.8 124 EP080: BTEXN (QCLot: 4403549) EP080: ortho-xylene 95-47-6 0.5 mg/kg <0.5 2 mg/kg 95.2 66.8 124 EP080: BTEXN (QCLot: 4403549) EP080: Ortho-xylene 95-47-6 0.5 mg/kg <0.5 2 mg/kg 95.2 66.8 123 EP080: STEXN (QCLot: 4403549) EP080: Steprane 71-43-2 0.2 mg/kg <0.5 2 mg/kg 93.6 65.8 125 EP080: Ethylbenzene 108-88-3 0.5 mg/kg <0.5 2 mg/kg 93.6 65.8 125 EP080: Ethylbenzene 108-88-3 0.5 mg/kg <0.5 2 mg/kg 93.6 65.8 125 EP080: Ethylbenzene 108-88-3 0.5 mg/kg <0.5 2 mg/kg 93.6 65.8 125 EP080: Ethylbenzene 109-41-4 0.5 mg/kg <0.5 2 mg/kg 93.6 65.8 125 EP080: Ethylbenzene 108-88-3 0.5 mg/kg <0.5 2 mg/kg 90.2 65.8 124 EP080: meta-& para-Xylene 108-88-3 0.5 mg/kg <0.5 2 mg/kg 90.2 65.8 124 EP080: meta-& para-Xylene 95-47-6 0.5 mg/kg <0.5 2 mg/kg 90.2 65.8 124 EP080: ortho-Xylene 95-47-6 0.5 mg/kg <0.5 2 mg/kg 90.2 65.8 124 EP080: ortho-Xylene 95-47-6 0.5 mg/kg <0.5 2 mg/kg 90.2 66.8 124 EP080: ortho-Xylene 95-47-6 0.5 mg/kg <0.5 2 mg/kg 90.2 66.8 124 EP080: ortho-Xylene 95-47-6 0.5 mg/kg <0.5 2 mg/kg 90.4 68.7 132 EP080: Naphthalene 91-20-3 1 mg/kg <1 0.5 mg/kg <1 0.5 mg/kg 90.4 68.7 132	EP071: >C16 - C34 Fraction		100	mg/kg	<100	3770 mg/kg	93.3	81.5	120		
EP080: BTEXN (QCLot: 4400437) EP080: Benzene	EP071: >C34 - C40 Fraction		100	mg/kg	<100	250 mg/kg	74.8	73.3	137		
EP080: Benzene 71-43-2 0.2 mg/kg <0.2 2 mg/kg 83.6 61.6 117	EP071: >C10 - C40 Fraction (sum)		50	mg/kg	<50	5020 mg/kg	90.6	70.0	130		
EP080: Toluene 108-88-3 0.5 mg/kg <0.5 2 mg/kg 90.3 65.8 125	EP080: BTEXN (QCLot: 4400437)										
EP080: Ethylbenzene 100-41-4 0.5 mg/kg <0.5 2 mg/kg 90.3 65.8 124 EP080: meta- & para-Xylene 108-38-3 0.5 mg/kg <0.5 4 mg/kg 93.9 64.8 134 EP080: ortho-Xylene 95-47-6 0.5 mg/kg <0.5 2 mg/kg 95.2 68.7 132 EP080: Naphthalene 91-20-3 1 mg/kg <1 0.5 mg/kg 91.8 61.8 123 EP080: BEEXN (QCLot: 4403549) EP080: Benzene 71-43-2 0.2 mg/kg <0.5 2 mg/kg 93.6 65.8 125 EP080: Toluene 108-88-3 0.5 mg/kg <0.5 2 mg/kg 93.6 65.8 125 EP080: Ethylbenzene 100-41-4 0.5 mg/kg <0.5 2 mg/kg 93.6 65.8 125 EP080: Ethylbenzene 100-41-4 0.5 mg/kg <0.5 2 mg/kg 90.2 65.8 124 EP080: Ethylbenzene 108-38-3 0.5 mg/kg <0.5 2 mg/kg 90.2 65.8 124 EP080: meta- & para-Xylene 108-38-3 0.5 mg/kg <0.5 2 mg/kg 90.2 65.8 124 EP080: ortho-Xylene 95-47-6 0.5 mg/kg <0.5 2 mg/kg 90.2 66.8 134 EP080: ortho-Xylene 95-47-6 0.5 mg/kg <0.5 2 mg/kg 90.4 68.7 132 EP080: Naphthalene 91-20-3 1 mg/kg <1.5 0.5 mg/kg 10.5 mg/kg 90.4 66.7 132	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	2 mg/kg	83.6	61.6	117		
EP080: meta- & para-Xylene 108-38-3	EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	2 mg/kg	90.3	65.8	125		
106-42-3	EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	2 mg/kg	90.3	65.8	124		
EP080: ortho-Xylene 95-47-6 0.5 mg/kg <0.5 2 mg/kg 95.2 68.7 132 EP080: Naphthalene 91-20-3 1 mg/kg <1 0.5 mg/kg 91.8 61.8 123 EP080: BTEXN (QCLot: 4403549) EP080: Benzene 71-43-2 0.2 mg/kg <0.2 2 mg/kg 100 61.6 117 EP080: Toluene 108-88-3 0.5 mg/kg <0.5 2 mg/kg 93.6 65.8 125 EP080: Ethylbenzene 100-41-4 0.5 mg/kg <0.5 2 mg/kg 90.2 65.8 124 EP080: meta- & para-Xylene 108-38-3 0.5 mg/kg <0.5 4 mg/kg 88.2 64.8 134 EP080: ortho-Xylene 95-47-6 0.5 mg/kg <0.5 2 mg/kg 92.4 68.7 132 EP080: Naphthalene 91-20-3 1 mg/kg <1 0.5 mg/kg 102 61.8 123	EP080: meta- & para-Xylene		0.5	mg/kg	<0.5	4 mg/kg	93.9	64.8	134		
EP080: Naphthalene 91-20-3 1 mg/kg <1 0.5 mg/kg 91.8 61.8 123 EP080: BTEXN (QCLot: 4403549) EP080: Benzene 71-43-2 0.2 mg/kg <0.2 2 mg/kg 100 61.6 117 EP080: Toluene 108-88-3 0.5 mg/kg <0.5 2 mg/kg 93.6 65.8 125 EP080: Ethylbenzene 100-41-4 0.5 mg/kg <0.5 2 mg/kg 90.2 65.8 124 EP080: meta- & para-Xylene 108-38-3 0.5 mg/kg <0.5 4 mg/kg 88.2 64.8 134 EP080: ortho-Xylene 95-47-6 0.5 mg/kg <0.5 2 mg/kg 92.4 68.7 132 EP080: Naphthalene 91-20-3 1 mg/kg <1 0.5 mg/kg 10.5 mg/kg 10.5 mg/kg 10.5 mg/kg 10.5 132											
EP080: BTEXN (QCLot: 4403549) EP080: Benzene 71-43-2 0.2 mg/kg <0.2 2 mg/kg 100 61.6 117 EP080: Toluene 108-88-3 0.5 mg/kg <0.5 2 mg/kg 93.6 65.8 125 EP080: Ethylbenzene 100-41-4 0.5 mg/kg <0.5 2 mg/kg 90.2 65.8 124 EP080: meta- & para-Xylene 108-38-3 0.5 mg/kg <0.5 4 mg/kg 88.2 64.8 134 EP080: ortho-Xylene 95-47-6 0.5 mg/kg <0.5 2 mg/kg 92.4 68.7 132 EP080: Naphthalene 91-20-3 1 mg/kg <1 0.5 mg/kg 10.5 mg/kg 10.5 mg/kg 10.5 mg/kg 10.5 12 mg/kg 10.5 mg	EP080: ortho-Xylene										
EP080: Benzene 71-43-2 0.2 mg/kg <0.2 2 mg/kg 100 61.6 117 EP080: Toluene 108-88-3 0.5 mg/kg <0.5	EP080: Naphthalene	91-20-3	1	mg/kg	<1	0.5 mg/kg	91.8	61.8	123		
EP080: Toluene 108-88-3 0.5 mg/kg <0.5 2 mg/kg 93.6 65.8 125 EP080: Ethylbenzene 100-41-4 0.5 mg/kg <0.5 2 mg/kg 90.2 65.8 124 EP080: meta- & para-Xylene 108-38-3 0.5 mg/kg <0.5 4 mg/kg 88.2 64.8 134 EP080: ortho-Xylene 95-47-6 0.5 mg/kg <0.5 2 mg/kg 92.4 68.7 132 EP080: Naphthalene 91-20-3 1 mg/kg <1 0.5 mg/kg 10	EP080: BTEXN (QCLot: 4403549)										
EP080: Ethylbenzene 100-41-4 0.5 mg/kg <0.5 2 mg/kg 90.2 65.8 124 EP080: meta- & para-Xylene 108-38-3 0.5 mg/kg <0.5 4 mg/kg 88.2 64.8 134 EP080: ortho-Xylene 95-47-6 0.5 mg/kg <0.5 2 mg/kg 92.4 68.7 132 EP080: Naphthalene 91-20-3 1 mg/kg <1 0.5 mg/kg 10.5 mg/k	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	2 mg/kg	100	61.6	117		
EP080: meta- & para-Xylene 108-38-3 106-42-3 EP080: ortho-Xylene 95-47-6 91-20-3 1 108-38-3 105 108/kg <0.5 4 mg/kg 88.2 64.8 134 64.8 134 64.8 134 65.7 132 66.8 132 66.8 132 66.8 132 66.8 132 66.8 132 66.8 132 66.8 132 66.8 132 66.8 132 66.8 132 66.8 133	EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	2 mg/kg	93.6	65.8	125		
106-42-3	EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	2 mg/kg	90.2	65.8	124		
EP080: ortho-Xylene 95-47-6 0.5 mg/kg <0.5 2 mg/kg 92.4 68.7 132 EP080: Naphthalene 91-20-3 1 mg/kg <1	EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	4 mg/kg	88.2	64.8	134		
EP080: Naphthalene 91-20-3 1 mg/kg <1 0.5 mg/kg 102 61.8 123		106-42-3									
El doc. Naphridione	EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	2 mg/kg	92.4	68.7	132		
EP202A: Phenoxyacetic Acid Herbicides by LCMS (QCLot: 4404347)	EP080: Naphthalene	91-20-3	1	mg/kg	<1	0.5 mg/kg	102	61.8	123		
	EP202A: Phenoxyacetic Acid Herbicides by LCMS	(QCLot: 4404347)									

Page : 26 of 32 Work Order : EM2211061

Client : EDGE GROUP PTY LTD

Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LC	S) Report	
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP202A: Phenoxyacetic Acid Herbicides by LCMS (C	QCLot: 4404347) - co	ntinued						
EP202: 4-Chlorophenoxy acetic acid	122-88-3	0.02	mg/kg	<0.02	0.1 mg/kg	64.3	54.4	128
EP202: 2.4-DB	94-82-6	0.02	mg/kg	<0.02	0.1 mg/kg	70.3	45.5	130
EP202: Dicamba	1918-00-9	0.02	mg/kg	<0.02	0.1 mg/kg	61.9	51.7	135
EP202: Mecoprop	93-65-2	0.02	mg/kg	<0.02	0.1 mg/kg	64.2	60.0	130
EP202: MCPA	94-74-6	0.02	mg/kg	<0.02	0.1 mg/kg	64.5	56.8	131
EP202: 2.4-DP	120-36-5	0.02	mg/kg	<0.02	0.1 mg/kg	60.1	50.0	141
EP202: 2.4-D	94-75-7	0.02	mg/kg	<0.02	0.1 mg/kg	72.6	68.5	131
EP202: Triclopyr	55335-06-3	0.02	mg/kg	<0.02	0.1 mg/kg	67.4	50.8	141
EP202: 2.4.5-TP (Silvex)	93-72-1	0.02	mg/kg	<0.02	0.1 mg/kg	63.0	40.8	126
EP202: 2.4.5-T	93-76-5	0.02	mg/kg	<0.02	0.1 mg/kg	69.0	57.4	139
EP202: MCPB	94-81-5	0.02	mg/kg	<0.02	0.1 mg/kg	56.7	38.9	137
EP202: Picloram	1918-02-1	0.02	mg/kg	<0.02	0.1 mg/kg	63.1	48.7	129
EP202: Clopyralid	1702-17-6	0.02	mg/kg	<0.02	0.1 mg/kg	63.0	49.4	106
EP202: Fluroxypyr	69377-81-7	0.02	mg/kg	<0.02	0.1 mg/kg	66.7	53.2	128
EP202A: Phenoxyacetic Acid Herbicides by LCMS (C	QCLot: 4414289)							
EP202: 4-Chlorophenoxy acetic acid	122-88-3	0.02	mg/kg	<0.02	0.1 mg/kg	76.7	54.4	128
EP202: 2.4-DB	94-82-6	0.02	mg/kg	<0.02	0.1 mg/kg	69.1	45.5	130
EP202: Dicamba	1918-00-9	0.02	mg/kg	<0.02	0.1 mg/kg	78.5	51.7	135
EP202: Mecoprop	93-65-2	0.02	mg/kg	<0.02	0.1 mg/kg	73.4	60.0	130
EP202: MCPA	94-74-6	0.02	mg/kg	<0.02	0.1 mg/kg	74.8	56.8	131
EP202: 2.4-DP	120-36-5	0.02	mg/kg	<0.02	0.1 mg/kg	79.2	50.0	141
EP202: 2.4-D	94-75-7	0.02	mg/kg	<0.02	0.1 mg/kg	86.1	68.5	131
EP202: Triclopyr	55335-06-3	0.02	mg/kg	<0.02	0.1 mg/kg	81.0	50.8	141
EP202: 2.4.5-TP (Silvex)	93-72-1	0.02	mg/kg	<0.02	0.1 mg/kg	78.1	40.8	126
EP202: 2.4.5-T	93-76-5	0.02	mg/kg	<0.02	0.1 mg/kg	81.8	57.4	139
EP202: MCPB	94-81-5	0.02	mg/kg	<0.02	0.1 mg/kg	78.3	38.9	137
EP202: Picloram	1918-02-1	0.02	mg/kg	<0.02	0.1 mg/kg	62.4	48.7	129
EP202: Clopyralid	1702-17-6	0.02	mg/kg	<0.02	0.1 mg/kg	68.7	49.4	106
EP202: Fluroxypyr	69377-81-7	0.02	mg/kg	<0.02	0.1 mg/kg	80.4	53.2	128
Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LC	S) Report	
				Report	Spike	Spike Recovery (%)	Acceptable	e Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EG020T: Total Metals by ICP-MS (QCLot: 4396945)								
EG020A-T: Arsenic	7440-38-2	0.001	mg/L	<0.001	0.1 mg/L	104	89.2	115
EG020A-T: Beryllium	7440-41-7	0.001	mg/L	<0.001	0.1 mg/L	103	86.0	115
EG020A-T: Barium	7440-39-3	0.001	mg/L	<0.001	0.1 mg/L	103	87.2	117
EG020A-T: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.1 mg/L	96.1	86.4	115
EG020A-T: Chromium	7440-47-3	0.001	mg/L	<0.001	0.1 mg/L	104	86.9	112

Page : 27 of 32 Work Order : EM2211061

Client : EDGE GROUP PTY LTD

Project : 20220134

Sub-Matrix: WATER				Method Blank (MB)		S) Report		
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EG020T: Total Metals by ICP-MS (QCLot: 4396	6945) - continued							
EG020A-T: Cobalt	7440-48-4	0.001	mg/L	<0.001	0.1 mg/L	102	87.7	113
EG020A-T: Copper	7440-50-8	0.001	mg/L	<0.001	0.1 mg/L	100	86.9	111
EG020A-T: Lead	7439-92-1	0.001	mg/L	<0.001	0.1 mg/L	102	88.3	112
EG020A-T: Manganese	7439-96-5	0.001	mg/L	<0.001	0.1 mg/L	104	88.7	113
EG020A-T: Nickel	7440-02-0	0.001	mg/L	<0.001	0.1 mg/L	101	87.9	113
EG020A-T: Selenium	7782-49-2	0.01	mg/L	<0.01	0.1 mg/L	101	84.8	116
EG020A-T: Vanadium	7440-62-2	0.01	mg/L	<0.01	0.1 mg/L	106	87.1	114
EG020A-T: Zinc	7440-66-6	0.005	mg/L	<0.005	0.1 mg/L	106	86.7	117
EG020A-T: Boron	7440-42-8	0.05	mg/L	<0.05	0.5 mg/L	111	89.3	118
EG035T: Total Recoverable Mercury by FIMS	(QCLot: 4398048)							
EG035T: Mercury	7439-97-6	0.0001	mg/L	<0.0001	0.01 mg/L	113	73.4	119
EP080/071: Total Petroleum Hydrocarbons(Q	CLot: 4394056)							
EP080: C6 - C9 Fraction		20	μg/L	<20	360 μg/L	94.6	66.2	134
EP080/071: Total Petroleum Hydrocarbons(Q	CLot: 4396484)							
EP071: C10 - C14 Fraction		50	μg/L	<50	4000 μg/L	76.2	47.2	122
EP071: C15 - C28 Fraction		100	μg/L	<100	16900 μg/L	87.2	52.9	131
EP071: C29 - C36 Fraction		50	μg/L	<50	8090 μg/L	90.8	50.4	127
EP071: C10 - C36 Fraction (sum)		50	μg/L	<50	28990 μg/L	86.5	51.5	128
EP080/071: Total Recoverable Hydrocarbons -	NEPM 2013 Fractions (QCL	.ot: 4394056)						
EP080: C6 - C10 Fraction	C6_C10	20	μg/L	<20	450 μg/L	94.9	66.2	132
EP080/071: Total Recoverable Hydrocarbons -	NEPM 2013 Fractions (QCL	ot: 4396484)						
EP071: >C10 - C16 Fraction		100	μg/L	<100	5830 μg/L	84.8	49.1	125
EP071: >C16 - C34 Fraction		100	μg/L	<100	21700 μg/L	92.8	51.6	128
EP071: >C34 - C40 Fraction		100	μg/L	<100	1560 μg/L	81.1	47.2	130
EP071: >C10 - C40 Fraction (sum)		100	μg/L	<100	29090 μg/L	90.4	51.2	127
EP080: BTEXN (QCLot: 4394056)								
EP080: Benzene	71-43-2	1	μg/L	<1	20 μg/L	97.7	68.8	127
EP080: Toluene	108-88-3	2	μg/L	<2	20 μg/L	106	72.9	129
EP080: Ethylbenzene	100-41-4	2	μg/L	<2	20 μg/L	103	71.7	130
EP080: meta- & para-Xylene	108-38-3 106-42-3	2	μg/L	<2	40 μg/L	99.6	72.3	136
EP080: ortho-Xylene	95-47-6	2	μg/L	<2	20 μg/L	103	75.9	134
EP080: Naphthalene	91-20-3	5	μg/L	<5	5 μg/L	105	68.3	131

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Page : 28 of 32 Work Order : EM2211061

Client : EDGE GROUP PTY LTD

ub-Matrix: SOIL				М	atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Acceptable	Limits (%)
aboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
G005(ED093)T: T	otal Metals by ICP-AES (QCLot: 4400651)						
EM2211035-002	Anonymous	EG005T: Arsenic	7440-38-2	50 mg/kg	96.8	78.0	124
		EG005T: Cadmium	7440-43-9	50 mg/kg	97.6	79.7	116
		EG005T: Chromium	7440-47-3	50 mg/kg	104	79.0	121
		EG005T: Copper	7440-50-8	250 mg/kg	101	80.0	120
		EG005T: Lead	7439-92-1	250 mg/kg	96.9	80.0	120
		EG005T: Nickel	7440-02-0	50 mg/kg	107	78.0	120
		EG005T: Zinc	7440-66-6	250 mg/kg	93.9	80.0	120
G005(ED093)T: T	otal Metals by ICP-AES (QCLot: 4400652)						
EM2211061-016	BH06 - 0.1	EG005T: Arsenic	7440-38-2	50 mg/kg	99.2	78.0	124
		EG005T: Cadmium	7440-43-9	50 mg/kg	92.7	79.7	116
		EG005T: Chromium	7440-47-3	50 mg/kg	91.3	79.0	121
		EG005T: Copper	7440-50-8	250 mg/kg	99.9	80.0	120
		EG005T: Lead	7439-92-1	250 mg/kg	95.3	80.0	120
		EG005T: Nickel	7440-02-0	50 mg/kg	101	78.0	120
		EG005T: Zinc	7440-66-6	250 mg/kg	104	80.0	120
G035T: Total Re	coverable Mercury by FIMS (QCLot: 4400650)						
EM2211035-002	Anonymous	EG035T: Mercury	7439-97-6	0.5 mg/kg	102	76.0	116
G035T: Total Re	coverable Mercury by FIMS (QCLot: 4400653)						
EM2211061-016	BH06 - 0.1	EG035T: Mercury	7439-97-6	0.5 mg/kg	96.4	76.0	116
G048: Hexavaler	t Chromium (Alkaline Digest) (QCLot: 4400826)						
EM2210946-002	Anonymous	EG048G: Hexavalent Chromium	18540-29-9	20 mg/kg	65.6	58.0	114
EM2210946-002	Anonymous	EG048G: Hexavalent Chromium	18540-29-9	20 mg/kg	75.8	58.0	114
K026SF: Total C	N by Segmented Flow Analyser (QCLot: 4403123)			0 0			
EM2210714-001	Anonymous	EK026SF: Total Cyanide	57-12-5	20 mg/kg	87.5	70.0	130
K028SF: Weak A	Acid Dissociable CN by Segmented Flow Analyser(QC			0 0			
EM2211061-019	BH07 - 0.1	EK028SF: Weak Acid Dissociable Cyanide		20 mg/kg	100	70.0	130
K040T: Fluoride	Total (QCLot: 4400820)			0 0			
EM2211035-001	Anonymous	EK040T: Fluoride	16984-48-8	400 mg/kg	112	70.0	130
EP004: Organic M	atter (QCLot: 4405872)	2.10.10.11.11.10.11.10		0 0			
EM2210942-003	Anonymous	EP004: Organic Matter		1.79 %	82.7	70.0	120
00 000		EP004: Total Organic Carbon		1.04 %	82.6	70.0	120
P066: Polychlori	nated Biphenyls (PCB) (QCLot: 4400518)			, , .			.=•
EM2211058-008	Anonymous	EP066-EM: Total Polychlorinated biphenyls		1 mg/kg	107	59.6	152
	•	LF 000-EM. Total FolychionHated Diphenyls		1 1119/119	101	00.0	102
	nated Biphenyls (PCB) (QCLot: 4400532)						
EM2211061-019	BH07 - 0.1	EP066: Total Polychlorinated biphenyls		1 mg/kg	81.4	63.2	144

Page : 29 of 32 Work Order : EM2211061

Client : EDGE GROUP PTY LTD

Sub-Matrix: SOIL		Matrix Spike (MS) Report						
				Spike	SpikeRecovery(%)	Acceptable	Limits (%)	
aboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High	
EP068A: Organocl	hlorine Pesticides (OC) (QCLot: 4400531)							
EM2211061-019	BH07 - 0.1	EP068: gamma-BHC	58-89-9	0.5 mg/kg	81.2	51.4	139	
		EP068: Heptachlor	76-44-8	0.5 mg/kg	67.8	49.1	130	
		EP068: Aldrin	309-00-2	0.5 mg/kg	81.0	38.4	135	
		EP068: Dieldrin	60-57-1	0.5 mg/kg	83.0	58.4	136	
		EP068: Endrin	72-20-8	0.5 mg/kg	75.1	33.0	146	
		EP068: 4.4`-DDT	50-29-3	0.5 mg/kg	81.2	20.0	133	
P068B: Organopl	hosphorus Pesticides (OP) (QCLot: 440053	31)						
M2211061-019	BH07 - 0.1	EP068: Diazinon	333-41-5	0.5 mg/kg	92.5	65.1	135	
		EP068: Chlorpyrifos-methyl	5598-13-0	0.5 mg/kg	78.8	56.3	127	
		EP068: Pirimphos-ethyl	23505-41-1	0.5 mg/kg	75.5	55.0	133	
		EP068: Bromophos-ethyl	4824-78-6	0.5 mg/kg	75.1	55.1	133	
		EP068: Prothiofos	34643-46-4	0.5 mg/kg	68.3	43.8	128	
P069: Toxaphene	e (QCLot: 4400534)							
M2211061-033	BH09 - 0.1	EP069: Toxaphene	8001-35-2	10 mg/kg	128	54.2	138	
	lic Aromatic Hydrocarbons (QCLot: 44004	·		75				
EM2211035-001			71-43-2	2 ma//ca	88.2	53.7	130	
EIVIZZ I 1035-00 I	Anonymous	EP074-UT: Benzene	108-88-3	2 mg/kg	91.6	55.1	130	
		EP074-UT: Toluene	100-00-3	2 mg/kg	91.0	JJ. I	124	
P074I: Volatile Ha	alogenated Compounds (QCLot: 4400434)							
EM2211035-001	Anonymous	EP074-UT: 1.1-Dichloroethene	75-35-4	2 mg/kg	83.3	38.4	145	
		EP074-UT: Trichloroethene	79-01-6	2 mg/kg	78.7	48.1	128	
		EP074-UT: Chlorobenzene	108-90-7	2 mg/kg	81.3	55.5	122	
P075(SIM)A: Phe	nolic Compounds (QCLot: 4400535)							
M2211061-004	BH02 - 0.1	EP075(SIM): Phenol	108-95-2	1.5 mg/kg	100.0	77.1	119	
		EP075(SIM): 2-Chlorophenol	95-57-8	1.5 mg/kg	104	78.9	123	
		EP075(SIM): 2-Nitrophenol	88-75-5	1.5 mg/kg	96.0	43.8	136	
		EP075(SIM): 4-Chloro-3-methylphenol	59-50-7	1.5 mg/kg	85.4	61.5	120	
		EP075(SIM): Pentachlorophenol	87-86-5	1.5 mg/kg	53.7	15.3	139	
P075(SIM)A: Phe	enolic Compounds (QCLot: 4403571)							
EM2211061-031	BH09 - 0.5	EP075(SIM): Phenol	108-95-2	3 mg/kg	95.1	77.1	119	
		EP075(SIM): 2-Chlorophenol	95-57-8	3 mg/kg	92.3	78.9	123	
		EP075(SIM): 2-Nitrophenol	88-75-5	3 mg/kg	86.2	43.8	136	
		EP075(SIM): 4-Chloro-3-methylphenol	59-50-7	3 mg/kg	89.7	61.5	120	
		EP075(SIM): Pentachlorophenol	87-86-5	3 mg/kg	58.0	15.3	139	
P075(SIM)B: Poly	ynuclear Aromatic Hydrocarbons(QCLot: 4						1	
n or o(onin) b. I ory			83-32-9	1.5 mg/kg	99.6	77.2	116	
EM2211061-004	BH02 - 0.1	EP075(SIM): Acenaphthene						

Page : 30 of 32 Work Order : EM2211061

Client : EDGE GROUP PTY LTD

ub-Matrix: SOIL				Ma	atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Acceptable L	imits (%)
boratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
P075(SIM)B: Poly	nuclear Aromatic Hydrocarbons (QCLot: 4403571)						
M2211061-031	BH09 - 0.5	EP075(SIM): Acenaphthene	83-32-9	3 mg/kg	91.6	77.2	116
		EP075(SIM): Pyrene	129-00-0	3 mg/kg	91.6	65.5	136
P075A: Phenolic	Compounds (Halogenated) (QCLot: 4400516)						
	Anonymous	EP075-EM: 2-Chlorophenol	95-57-8	1.5 mg/kg	102	44.0	143
	, monymous	EP075-EM: 4-Chloro-3-methylphenol	59-50-7	1.5 mg/kg	97.9	41.5	139
		EP075-EM: Pentachlorophenol	87-86-5	1.5 mg/kg	84.9	10.0	144
P075A: Phenolic (Compounds (Non-halogenated) (QCLot: 4400516)						
M2211035-012	Anonymous	EP075-EM: Phenol	108-95-2	1.5 mg/kg	110	44.2	134
WIZZ11000 01Z	Autonymous	EP075-EM: 2-Nitrophenol	88-75-5	1.5 mg/kg	97.2	34.2	129
B075B: Bolymuolo	or Aramatia Hudracarbana (OCI et: 4400516)	El 073-Elvi. 2-Ividoprierio			02	V=	
	ar Aromatic Hydrocarbons (QCLot: 4400516)		00.00.0	4.5	04.0	40.0	400
M2211035-012	Anonymous	EP075-EM: Acenaphthene	83-32-9	1.5 mg/kg	94.6	42.6	138 152
		EP075-EM: Pyrene	129-00-0	1.5 mg/kg	# Not	37.8	152
					Determined		
	etroleum Hydrocarbons (QCLot: 4400434)						
M2211035-001	Anonymous	EP074-UT: C6 - C9 Fraction		28 mg/kg	88.4	42.3	111
P080/071: Total P	etroleum Hydrocarbons (QCLot: 4400437)						
M2211061-004	BH02 - 0.1	EP080: C6 - C9 Fraction		28 mg/kg	69.7	33.4	124
P080/071: Total P	etroleum Hydrocarbons (QCLot: 4400517)						
M2211058-006	Anonymous	EP071-EM: C10 - C14 Fraction		670 mg/kg	104	71.3	126
	,	EP071-EM: C15 - C28 Fraction		2860 mg/kg	100	75.1	123
		EP071-EM: C29 - C36 Fraction		1490 mg/kg	91.9	78.1	120
		EP071-EM: C10 - C36 Fraction (sum)		5020 mg/kg	98.7	70.0	130
P080/071: Total P	etroleum Hydrocarbons (QCLot: 4400533)						
M2211061-007	BH03 - 0.1	EP071: C10 - C14 Fraction		670 mg/kg	111	71.2	125
		EP071: C15 - C28 Fraction		2860 mg/kg	107	75.6	122
		EP071: C29 - C36 Fraction		1490 mg/kg	97.4	78.0	120
		EP071: C10 - C36 Fraction (sum)		5020 mg/kg	105	70.0	130
P080/071: Total P	etroleum Hydrocarbons (QCLot: 4403549)						
M2211061-026	SP07	EP080: C6 - C9 Fraction		28 mg/kg	78.6	33.4	124
				20 mg/kg	70.0	00.1	
	ecoverable Hydrocarbons - NEPM 2013 Fractions(Qe		00.010	00 #	04.0	00.0	400
M2211035-001	Anonymous	EP074-UT: C6 - C10 Fraction	C6_C10	33 mg/kg	84.6	39.9	109
P080/071: Total R	ecoverable Hydrocarbons - NEPM 2013 Fractions (Q	CLot: 4400437)					
M2211061-004	BH02 - 0.1	EP080: C6 - C10 Fraction	C6_C10	33 mg/kg	64.7	30.8	120
P080/071: Total R	ecoverable Hydrocarbons - NEPM 2013 Fractions (Qu	CLot: 4400517)					
M2211058-006	Anonymous	EP071-EM: >C10 - C16 Fraction		1000 mg/kg	97.2	71.5	130

Page : 31 of 32 Work Order : EM2211061

Client : EDGE GROUP PTY LTD

Sub-Matrix: SOIL				Ма	atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Acceptable	Limits (%)
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EP080/071: Total F	Recoverable Hydrocarbons - NEPM 2013	Fractions (QCLot: 4400517) - continued					
EM2211058-006	Anonymous	EP071-EM: >C16 - C34 Fraction		3770 mg/kg	101	76.9	119
		EP071-EM: >C34 - C40 Fraction		250 mg/kg	106	65.3	139
		EP071-EM: >C10 - C40 Fraction (sum)		5020 mg/kg	101	70.0	130
EP080/071: Total F	Recoverable Hydrocarbons - NEPM 2013	Fractions (QCLot: 4400533)					
EM2211061-007	BH03 - 0.1	EP071: >C10 - C16 Fraction		1000 mg/kg	110	72.2	128
		EP071: >C16 - C34 Fraction		3770 mg/kg	110	76.5	119
		EP071: >C34 - C40 Fraction		250 mg/kg	107	66.8	138
		EP071: >C10 - C40 Fraction (sum)		5020 mg/kg	109	70.0	130
P080/071: Total F	Recoverable Hydrocarbons - NEPM 2013	Fractions (QCLot: 4403549)					
EM2211061-026	SP07	EP080: C6 - C10 Fraction	C6_C10	33 mg/kg	64.0	30.8	120
EP080: BTEXN (Q	CLot: 4400437)						
EM2211061-004	BH02 - 0.1	EP080: Benzene	71-43-2	2 mg/kg	101	54.4	127
		EP080: Toluene	108-88-3	2 mg/kg	106	57.1	131
P080: BTEXN (Q	CL ot: 4403549)			0 0			
M2211061-026	SP07	EP080: Benzene	71-43-2	2 mg/kg	96.7	54.4	127
	5. 6.	EP080: Toluene	108-88-3	2 mg/kg	93.2	57.1	131
ED202A: Phonovy	acetic Acid Herbicides by LCMS(QCLot				77.2		
EM2210264-004	Anonymous		93-65-2	0.1 mg/kg	63.1	60.0	140
LIVI2210204-004	Anonymous	EP202: Mecoprop	94-74-6	0.1 mg/kg	70.2	57.0	143
		EP202: MCPA	94-75-7	0.1 mg/kg	70.8	68.0	139
		EP202: 2.4-D	55335-06-3	0.1 mg/kg	70.2	51.0	145
		EP202: Triclopyr	93-76-5	0.1 mg/kg	68.1	57.0	143
		EP202: 2.4.5-T	1918-02-1	0.1 mg/kg	# 39.1	49.0	138
		EP202: Picloram EP202: Clopyralid	1702-17-6	0.1 mg/kg	# 20.6	49.0	149
		EF202. Giopyraliu	1702 17 0				140
ub-Matrix: WATER					atrix Spike (MS) Report		1::4- (0/)
aboratory sample ID	Sample ID		CAS Number	Spike Concentration	SpikeRecovery(%) MS	Acceptable	1 ,
		Method: Compound	CAS Nulliber	Concentration	IVIS	Low	High
EG0201: Total Met EM2210986-003	tals by ICP-MS (QCLot: 4396945)	ECCOCA To Associa	7440-38-2	1 mg/l	93.7	82.0	123
LIVIZZ 10900-003	Anonymous	EG020A-T: Arsenic	7440-38-2	1 mg/L 1 mg/L	93.7	79.0	123
		EG020A-T: Beryllium	7440-39-3	1 mg/L	99.0	80.0	120
		EG020A-T: Codmirm	7440-39-3	0.25 mg/L	93.2	81.8	120
		EG020A-T: Chromium	7440-43-9	0.25 Hg/L 1 mg/L	93.2	78.9	119
		EG020A-T: Coholt	7440-47-3	1 mg/L	92.9	80.7	121
		EG020A-T: Cobalt	7440-40-4	1 mg/L	96.0	80.4	118
		EG020A-T: Copper	7439-92-1	1 mg/L	98.9	80.5	121
		EG020A-T: Lead	7439-92-1	1 mg/L	101	73.0	121
		EG020A-T: Manganese	7439-90-5	I IIIg/L	101	73.0	123

Page : 32 of 32 Work Order : EM2211061

Client : EDGE GROUP PTY LTD

Sub-Matrix: WATER		Matrix Spike (MS) Report					
				Spike	SpikeRecovery(%)	Acceptable L	imits (%)
Laboratory sample ID	Sample ID	CAS Number	Concentration	MS	Low	High	
EG020T: Total Met	als by ICP-MS (QCLot: 4396945) - continued						
EM2210986-003	Anonymous	EG020A-T: Nickel	7440-02-0	1 mg/L	99.4	80.0	118
		EG020A-T: Vanadium	7440-62-2	1 mg/L	92.2	81.0	119
		EG020A-T: Zinc	7440-66-6	1 mg/L	98.0	74.0	120
EG035T: Total Red	coverable Mercury by FIMS (QCLot: 4398048)						
EM2210889-003	Anonymous	EG035T: Mercury	7439-97-6	0.01 mg/L	103	70.0	130
EP080/071: Total P	etroleum Hydrocarbons (QCLot: 4394056)						
EM2210659-011	Anonymous	EP080: C6 - C9 Fraction		280 μg/L	91.1	33.9	126
EP080/071: Total R	ecoverable Hydrocarbons - NEPM 2013 Fractions (QCL	ot: 4394056)					
EM2210659-011	Anonymous	EP080: C6 - C10 Fraction	C6_C10	330 µg/L	77.6	34.0	122
EP080: BTEXN (Q	CLot: 4394056)						
EM2210659-011	Anonymous	EP080: Benzene	71-43-2	20 μg/L	102	56.3	133
		EP080: Toluene	108-88-3	20 μg/L	110	60.4	132

CHADI	OF CHOTODY DOO!		TION																 	٦.
	OF CUSTODY DOCU	MENTA			·														_	ľ
	EDGE GROUP	· · · · ·					SAM	LER:		GМ	ED									
ADDRESS	/ OFFICE: 423 CITY RD SOUT	H MELBOU	RNE				МОВІ	LE:	040	09 106	6 107								Australian Laboratory Services Fty Ltu	
	MANAGER (PM): Natasha Dun	<u>·</u>					PHONE									2-4 Westall Road, Springvalo, VIC 3171				
PROJECT	ID: 20220134					_	EMAIL REPORT TO: natasha.dun@edgegroup.net.au; garry.masur@edg							dgegr	oup.ne	dgegroup.net.au	7			
SITE: Hope	etouri Park			P.O. NO.	:		_			_	ounts(@edge	group	o.net.a	u					7
RESULTS I	REQUIRED (Date):			QUOTE	NO.: MEBQ 108 - 20)	ANAL	YSIS F	EQUIF	RED in	cluding	SUITE	S (note	- suite	codes r	nust be lis	ted to a	tract sui	te prices)	
FOR LABO	RATORY USE ONLY	COM	MENTS / SPEC	IAL HAND	LING / STORAGE C	R DIPOSAL:	1		Τ	Т	Т	T	Ţ <u></u> -	1 -			<u> </u>	\top	Notes: e.g. Highly contaminated samples	1/0/
COOLER'S	EAL (circle appropriate)			-						ြမ္မ				1	1 .		- 1		e.g. "High PAHs expected".	11,47
intacto	Yas No N/A			•			1			0990			als	1		- 1	- [Extra volume for QC or trace LORs etc.	111
	EMPERATURE						bicides			1 6	i		Met	ł		- 1	- 1		Extra volume for GO of frace COAS etc.	
CHILLED:	Yeo No						1 ਛੂੱ		1	PAH			8/	ł						
3		<u> </u>			· · · · · · · · · · · · · · · · · · ·		1 🚊	tion	Ī	BTEXN		1	₹	1						
`							, S	Classification				_	BTEXN / PAH / 8 Metals				j			
1							Scree	Jass		표	!	🛣	ĕ				1		1	
İ					[<	Site	ē	metals	1	TRH BTEXN	C40) / E			-			BELLHOULCHED DV	
							불	¦;	Scre	1 60		≱	2/4						RELINQUISHED BY	
1							E N	P22 NEPM EIL	1828.2	S-12 (metals	TRH (C6-	etals	🕺		-		BN CALS) 14/6/22 8 -	
	SAMPLE INFORMATION (ne	ote: S = Soil	, W=Water)		CONTAINER II	NEORMATION	Z	逆	182	+		l E		Ĕ ν	TRH BTEXN			ہ ا	11/1/12 80-	Ĭ
ALS ID	SAMPLE ID	MATRIX	DATE	Time	Type / Code	Total bottles	P21/2	22	EPA	S-26	Pag.	8-58	828	S3 15 i	문	- 1		구 무	14/0/2	Envirolab Services
30	BH08-0.1 '	s	9/6/2022			2				X	一	 		-				- 	ENVIROLAB	25 Research Drive
31	BH08-0.5	´s	9/6/2022			2		X				X							41041	rdydon South VIC 3136
32	BH08-1.0	s	9/6/2022			1													Job No: 1	Ph: (03) 9763 2500
33	BH09-0.1	s	9/6/2022			2	X		<u> </u>											
30	BH09-0.5 BH09-1.0	S	9/6/2022			1 1	_				<u> </u>	X							- Date Receive	ૄૄા ૄ(((ય
35 36	BH10-0.1	S	9/6/2022 9/6/2022	 		1 2		ļ. —	-	ļ	 	 		<u> </u>			4		Time Receive	1 125 m
37	BH10-0.5	s	9/6/2022	+		1	├		₩-	×	-	X	 	<u> </u>				+	Received By:	-11 <i>6</i> ~
38	BH10-1.0	s	9/6/2022	 -	 	+ ;	 	 -		 	-	 ^ -	├	<u> </u>		 -		+	Temo/ Cod/A	whient 1-4-0
39	BH11-0.1	s	9/6/2022	 		2	×			\vdash	 	+	 		┤─┤	— <u></u> -		+	Cooling (celt	epack
40	BH11-0.5	s	9/6/2022			1	1	_		1	\vdash	×				- +-		+	Security: A	Broken/None
41	BH1-1.0	s	9/6/2022			1					†	 		 		一十	- -	-	 	<u>ዛ</u> '
42	BH12-0.1	S	9/6/2022			2					х	х							 	7
43	BH12-0.5	s	9/6/2022	ļ		1						х								1
40	BH12-1.0	S	9/6/2022	—			<u> </u>	<u> </u>	L		1						$-\Gamma$			
45	FD01	<u> </u>	9/6/2022	 		1	<u> </u>	<u> </u>	<u> </u>	<u> </u>	↓ _	ļ	<u> </u>	Х						
H	- FS01 RINS01	S	9/6/2022	-		1 1	 	├	L	-		 	<u> </u>	X	<u> </u>		<u> </u>		Send to Envirolation	er analysis.
1 35 +	TRIP01	S	9/6/2022 9/6/2022	 -		- 	┼		<u> </u>	+	 	┼	<u> </u>	X	ان ا			_		er analysis: please!! (FSC)
44				<u> </u>	·		 		<u> </u>	1	Ц.	<u></u>		l	Х		Щ.			4 Publication
Mamai	- (/ ~	KELIN	QUISHED BY:		Date: 9 4	122	 		_		_	RE	CEIVE		ı				METHOD OF SHIPMENT	- (FSG)
Name:							Nam	<u>e:</u>							Date:				Con' Note No:	4
Of:						: 600 Dim	Of:		_						Time:					_
Name:					Date:		Nam	e:							Date:				Transport Co:	_}
Of:	daines Codest Bell	1 =			Time:		Of:		_						Time:				<u> </u>	_}
Water Con V = V∩4 \0-4	tainer Codes: P = Unpresent	red Plastic:	N = Nitric Prese	rved Plastic	c; ORC = Nitric Pres	served ORC; SH	= Sodiu	ım Hydr	oxide/(Cd Pres	served;	S = Sc	dium H	ydroxid	e Prese	veed Pla	tic; AG	= Amber	Glass Unpreserved;	
Z = Zinc Ace	al HCl Preserved; VS = VOA Vial state Preserved Bottle; E = EDTA	Preserved	Bottles; ST = St	erile Bottle:	eserved Amber Gla ASS = Plastic Bad	ss: H = HCl pres for Acid Sulphate	ervea F Soils: I	nasti¢: B = Und	ਸਤ = b neserv	nGl pre: red Ban	served I.	Special	ian batt	10; SP =	= Sulfurl	¢ Preserv	od Plasi	ic; F=F	ormaldehyde Preseryed Glass;	
	3.0-F0H	5			RALIAN LAB														COC Page 3 of 3	_

49. BHO7-1.0 & 9/6/22 (Extra Sample

Envirolab Services Pty Ltd

ABN 37 112 535 645 - 002 25 Research Drive Croydon South VIC 3136 ph 03 9763 2500 fax 03 9763 2633 melbourne@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 31939

Client Details	
Client	Edge Group Pty Ltd
Attention	Natasha Dun
Address	Level 1, 423 City Road, South Melbourne, VIC, 3205

Sample Details	
Your Reference	20220134
Number of Samples	1 Soil
Date samples received	14/06/2022
Date completed instructions received	14/06/2022

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details				
Date results requested by	20/06/2022			
Date of Issue	17/06/2022			
NATA Accreditation Number 2901. This document shall not be reproduced except in full.				
Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *				

Results Approved By

Chris De Luca, Operations Manager

Authorised By

Pamela Adams, Laboratory Manager

17 metals in soil		
Our Reference		31939-1
Your Reference	UNITS	FS01
Date Sampled		09/06/2022
Type of sample		Soil
Date digested	-	16/06/2022
Date analysed	-	16/06/2022
Arsenic	mg/kg	<4
Boron	mg/kg	7
Barium	mg/kg	40
Beryllium	mg/kg	<1
Cadmium	mg/kg	<0.4
Chromium	mg/kg	17
Cobalt	mg/kg	18
Copper	mg/kg	19
Manganese	mg/kg	340
Nickel	mg/kg	68
Lead	mg/kg	9
Selenium	mg/kg	<2
Vanadium	mg/kg	22
Zinc	mg/kg	48
Mercury	mg/kg	<0.1

Moisture		
Our Reference		31939-1
Your Reference	UNITS	FS01
Date Sampled		09/06/2022
Type of sample		Soil
Date prepared	-	15/06/2022
Date analysed	-	16/06/2022
Moisture	%	7.6

Method ID	Methodology Summary			
Inorg-008	Moisture content determined by heating at 105°C for a minimum of 12 hours.			
Metals-020 ICP-AES	Determination of various metals by ICP-AES.			
M-4-1- 004 0V 440	Determine for a CM course by October on AAO			
Metals-021 CV-AAS	Determination of Mercury by Cold Vapour AAS.			

Envirolab Reference: 31939

Revision No: R00

QUALITY CONTROL: 17 metals in soil			Duplicate			Spike Recovery %				
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date digested	-			16/06/2022	[NT]		[NT]	[NT]	16/06/2022	
Date analysed	-			16/06/2022	[NT]		[NT]	[NT]	16/06/2022	
Arsenic	mg/kg	4	Metals-020 ICP- AES	<4	[NT]		[NT]	[NT]	107	
Boron	mg/kg	3	Metals-020 ICP- AES	<3	[NT]		[NT]	[NT]	106	
Barium	mg/kg	1	Metals-020 ICP- AES	<1	[NT]		[NT]	[NT]	109	
Beryllium	mg/kg	1	Metals-020 ICP- AES	<1	[NT]		[NT]	[NT]	107	
Cadmium	mg/kg	0.4	Metals-020 ICP- AES	<0.4	[NT]		[NT]	[NT]	107	
Chromium	mg/kg	1	Metals-020 ICP- AES	<1	[NT]		[NT]	[NT]	106	
Cobalt	mg/kg	1	Metals-020 ICP- AES	<1	[NT]		[NT]	[NT]	104	
Copper	mg/kg	1	Metals-020 ICP- AES	<1	[NT]		[NT]	[NT]	107	
Manganese	mg/kg	1	Metals-020 ICP- AES	<1	[NT]		[NT]	[NT]	112	
Nickel	mg/kg	1	Metals-020 ICP- AES	<1	[NT]		[NT]	[NT]	107	
Lead	mg/kg	1	Metals-020 ICP- AES	<1	[NT]		[NT]	[NT]	106	
Selenium	mg/kg	2	Metals-020 ICP- AES	<2	[NT]		[NT]	[NT]	103	
Vanadium	mg/kg	1	Metals-020 ICP- AES	<1	[NT]		[NT]	[NT]	108	
Zinc	mg/kg	1	Metals-020 ICP- AES	<1	[NT]		[NT]	[NT]	103	
Mercury	mg/kg	0.1	Metals-021 CV-AAS	<0.1	[NT]		[NT]	[NT]	95	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Control	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% - see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Envirolab Reference: 31939 Page | 7 of 7 R00

Revision No:

Envirolab Services Pty Ltd

ABN 37 112 535 645 - 002 25 Research Drive Croydon South VIC 3136 ph 03 9763 2500 fax 03 9763 2633 melbourne@envirolab.com.au www.envirolab.com.au

DATA QUALITY ASSESSMENT SUMMARY

Report Details	
Envirolab Report Reference	<u>31939</u>
Client ID	Edge Group Pty Ltd
Project Reference	20220134
Date Issued	17/06/2022

QC DATA

All laboratory QC data was within the Envirolab Group's specifications.

HOLDING TIME COMPLIANCE EVALUATION

All preservation / holding times (based on AS/ASPHA/ISO/NEPM/USEPA reference documents and standards) are compliant.

Certain analyses have had their recommended technical holding times elongated by filtering and/or freezing on receipt at the laboratory (e.g. BOD, chlorophyll/Pheophytin, nutrients and acid sulphate soil tests).

COMPLIANCE TO QC FREQUENCY (NEPM)

Internal laboratory QC rate complies with NEPM requirements (LCS/MB/MS 1 in 20, Duplicates 1 in 10 samples). Note, samples are batched together with other sample consignments in order to assign QC sample frequency.

QC Evaluation	
Duplicate(s) was performed as per NEPM frequency	✓
Laboratory Control Sample(s) were analysed with the samples received	✓
A Method Blank was performed with the samples received	✓
Matrix spike(s) was performed as per NEPM frequency (Not Applicable for Air samples)	✓

Refer to Certificate of Analysis for all Quality Control data.